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1 INRIA – École Normale Supérieure, Paris, France 2 INRIA – CentraleSupélec, Châtenay-Malabry, France
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Abstract
In this paper, we propose several improvements
on the block-coordinate Frank-Wolfe (BCFW)
algorithm from Lacoste-Julien et al. (2013) re-
cently used to optimize the structured support
vector machine (SSVM) objective in the con-
text of structured prediction, though it has wider
applications. The key intuition behind our im-
provements is that the estimates of block gaps
maintained by BCFW reveal the block subop-
timality that can be used as an adaptive crite-
rion. First, we sample objects at each iteration of
BCFW in an adaptive non-uniform way via gap-
based sampling. Second, we incorporate pair-
wise and away-step variants of Frank-Wolfe into
the block-coordinate setting. Third, we cache or-
acle calls with a cache-hit criterion based on the
block gaps. Fourth, we provide the first method
to compute an approximate regularization path
for SSVM. Finally, we provide an exhaustive
empirical evaluation of all our methods on four
structured prediction datasets.

1. Introduction
One of the most popular learning objectives for structured
prediction is the structured support vector machine (Taskar
et al., 2003; Tsochantaridis et al., 2005), which generalizes
the classical binary SVM to problems with structured out-
puts. In this paper, we consider the `2-regularized `1-slack
structured SVM, to which we will simply refer as SSVM.
The SSVM method consists in the minimization of the reg-
ularized structured hinge-loss on the labeled training set.
The optimization problem of SSVM is of significant com-
plexity and, thus, hard to scale up. In the literature, multi-
ple optimization methods have been applied to tackle this
problem, including cutting-plane methods (Tsochantaridis
et al., 2005; Joachims et al., 2009) and stochastic subgradi-
ent methods (Ratliff et al., 2007), among others.
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Recently, Lacoste-Julien et al. (2013) proposed the block-
coordinate Frank-Wolfe method (BCFW), which is cur-
rently one of the state-of-the-art algorithms for SSVM.1

In contrast to the classical (batch) Frank-Wolfe algo-
rithm (Frank & Wolfe, 1956), BCFW is a randomized
block-coordinate method that works on block-separable
convex compact domains. In the case of SSVM, BCFW
operates in the dual domain and iteratively applies Frank-
Wolfe steps on the blocks of dual variables corresponding
to different objects of the training set. Distinctive features
of BCFW for SSVM include optimal step size selection
leading to the absence of the step-size parameter, conver-
gence guarantees for the primal objective, and ability to
compute the duality gap as a stopping criterion.

Notably, the duality gap obtained by BCFW can be writ-
ten as a sum of block gaps, where each block of dual vari-
ables corresponds to one training example. In this paper,
we exploit this property and improve the BCFW algorithm
in multiple ways. First, we substitute the standard uniform
sampling of objects at each iteration with an adaptive non-
uniform sampling. Our procedure consists in sampling ob-
jects with probabilities proportional to the values of their
block gaps, giving one of the first fully adaptive sampling
approaches in the optimization literature that we are aware
of. This choice of sampling probabilities is motivated by
the intuition that objects with higher block gaps potentially
can provide more improvement to the objective. We ana-
lyze the effects of the gap-based sampling on convergence
and discuss the practical trade-offs.

Second, we apply pairwise (Mitchell et al., 1974) and
away (Wolfe, 1970) steps of Frank-Wolfe to the block-
coordinate setting. This modification is motivated by the
fact that batch algorithms based on these steps have linear
convergence rates (Lacoste-Julien & Jaggi, 2015) whereas
convergence of standard Frank-Wolfe is sublinear.

Third, we cache oracle calls and propose a gap-based cri-
terion for calling the oracle (cache miss vs. cache hit).
Caching the oracle calls was shown do deliver significant
speed-ups when the oracle is expensive, e.g., in the case of

1Independently, Branson et al. (2013) proposed their SVM-IS
algorithm which is equivalent to BCFW in some scenarios.
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cutting-plane methods (Joachims et al., 2009).

Finally, we propose an algorithm to approximate the regu-
larization path of SSVM, i.e., solve the problem for all pos-
sible values of the regularization parameter. Our method
exploits block gaps to construct the breakpoints of the path
and leads to an ε-approximate path.

Contributions. Overall, we make the following contri-
butions: (i) adaptive non-uniform sampling of the train-
ing objects; (ii) pairwise and away steps in the block-
coordinate setting; (iii) gap-based criterion for caching the
oracle calls; (iv) regularization path for SSVM. The first
three contributions are general to BCFW and thus could
be applied to other block-separable optimization problems
where BCFW could or have been used such as video co-
localization (Joulin et al., 2014), multiple sequence align-
ment (Alayrac et al., 2016, App. B) or structured submod-
ular optimization (Jegelka et al., 2013), among others.

This paper is organized as follows. In Section 2, we
describe the setup and review the BCFW algorithm. In
Section 3, we describe our contributions: adaptive sam-
pling (Section 3.1), pairwise and away steps (Section 3.2),
caching (Section 3.3). In Section 4, we explain our algo-
rithm to compute the regularization path. We discuss the
related work in the relevant sections of the paper. Section 5
contains the experimental study of the methods. The code
and datasets are available at our project webpage.2

2. Background
2.1. Structured Support Vector Machine (SSVM)
In structured prediction, we are given an input x ∈ X , and
the goal is to predict a structured object y ∈ Y(x) (such
as a sequence of tags). In the standard setup for structured
SVM (SSVM) (Taskar et al., 2003; Tsochantaridis et al.,
2005), we assume that prediction is performed with a lin-
ear model hw(x) = argmaxy∈Y(x)〈w,φ(x,y)〉 parame-
terized by the weight vectorw where the structured feature
map φ(x,y) ∈ Rd encodes the relevant information for
input/output pairs. We reuse below the notation and setup
from Lacoste-Julien et al. (2013). Given a labeled training
set D = {(xi,yi)}ni=1, the parameters w are estimated by
solving a convex non-smooth optimization problem

min
w

λ
2 ‖w‖

2
+ 1

n

n∑
i=1

H̃i(w) (1)

where λ is the regularization parameter and H̃i(w) is the
structured hinge loss defined using the loss-augmented de-
coding subproblem (or maximization oracle):

‘max
oracle’

H̃i(w) := max
y∈Yi

Li(y)− 〈w,ψi(y)〉︸ ︷︷ ︸
=:Hi(y;w)

. (2)

Here ψi(y) := φ(xi,yi) − φ(xi,y), Yi := Y(xi), and
Li(y) := L(yi,y) denotes the task-dependent structured

2 http://www.di.ens.fr/sierra/research/gapBCFW/

Algorithm 1 Block-Coordinate Frank-Wolfe (BCFW) al-
gorithm for structured SVM

1: Let w(0) :=wi
(0) :=0; `(0) :=`i

(0) :=0
2: for k := 0, . . . ,∞ dos
3: Pick i at random in {1, . . . , n}
4: Solve y∗i := argmax

y∈Yi

Hi(y;w(k))

5: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

6: Let g(k)
i := λ(w

(k)
i −ws)Tw(k) − `(k)

i + `s

7: Let γ :=
g
(k)
i

λ‖w(k)
i −ws‖2

and clip to [0, 1]

8: Update wi(k+1) := (1− γ)wi
(k) + γws

9: and `i
(k+1) := (1− γ)`i(k) + γ `s

10: Update w(k+1) := w(k) +wi
(k+1) −wi(k)

11: and `(k+1) := `(k) + `i
(k+1) − `i(k)

12: end for

error of predicting an output y instead of the observed out-
put yi (e.g., a Hamming distance between two sequences).

Dual formulation. The negative of a Fenchel dual for ob-
jective (1) can be written as

min
α∈Rm

α<0

f(α) := λ
2

∥∥Aα∥∥2 − bTα (3)

s.t.
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n]

where αi(y), i ∈ [n] := {1, . . . , n}, y ∈ Yi
are the dual variables. The matrix A ∈ Rd×m con-
sists of the m :=

∑
imi =

∑
i |Yi| columns A :={

1
λnψi(y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

, and the vector b ∈
Rm is given by b :=

(
1
nLi(y)

)
i∈[n],y∈Yi

.

In SSVM (as for the standard SVM), the Karush-Kuhn-
Tucker (KKT) optimality conditions can give the pri-
mal variables w(α) = Aα =

∑
i,y∈Yi

αi(y)ψi(y)
λn corre-

sponding to the dual variables α (see, e.g., (Lacoste-Julien
et al., 2013, App. E)). The gradient of f then takes a simple
form ∇f(α) = λATAα − b = λATw − b; its (i,y)-th
component equals − 1

nHi(y;w).

2.2. Block Coordinate Frank-Wolfe method (BCFW)
We give in Alg. 1 the BCFW algorithm from Lacoste-Julien
et al. (2013) applied to problem (3). It exploits the block-
separability of the domainM := ∆|Y1| × . . . ×∆|Yn| for
problem (3) and sequentially applies the Frank-Wolfe steps
to the blocks of the dual variables α(i) ∈M(i) := ∆|Yi|.

While BCFW works on the dual (3) of SSVM, it only
maintains explicitly the primal variables via the relation-
ship w(α). Most importantly, the Frank-Wolfe linear ora-
cle on block i at iterate α(k) is equivalent to the max ora-
cle (2) at the corresponding weight vector w(k) := Aα(k)

(Lacoste-Julien et al., 2013, App. B.1) (see line 4 of Alg. 1):

max
s(i)∈M(i)

〈
s(i),−∇(i)f(α(k))

〉
= 1

n max
y∈Yi

Hi(y;w(k)). (4)

http://www.di.ens.fr/sierra/research/gapBCFW/


Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

Here, the operator ∇(i) denotes the partial gradient corre-
sponding to the block i, i.e., ∇f = (∇(i)f)ni=1. Note that
each argmax of the r.h.s. of (4), y∗(i), corresponds to a cor-
ner s∗(i) of the polytopeM(i) maximizing the l.h.s. of (4).

As the objective (3) is quadratic, the optimal step size that
yields the maximal improvement in the chosen direction
s∗(i) −α

(k)
(i) can be found analytically (Line 7 of Alg. 1).

2.3. Duality gap
At each iteration, the batch Frank-Wolfe algorithm (Frank
& Wolfe, 1956), (Lacoste-Julien et al., 2013, Section 3)
computes the following quantity, known as the lineariza-
tion duality gap or Frank-Wolfe gap:

g(α) := max
s∈M

〈α− s,∇f(α)〉 = 〈α− s∗,∇f(α)〉. (5)

It turns out that this Frank-Wolfe gap exactly equals the
Lagrange duality gap between the dual objective (3) at a
point α and the primal objective (1) at the point w(α) =
Aα (Lacoste-Julien et al., 2013, App. B.2).

Because of the separability ofM, the Frank-Wolfe gap (5)
can be represented here as a sum of block gaps gi(α),
g(α) =

∑n
i=1 gi(α), where

gi(α) := max
s(i)∈M(i)

〈
α(i) − s(i),∇(i)f(α)

〉
. (6)

Block gaps can be easily computed using the quantities
maintained by Alg. 1 (see line 6).

Finally, we can rewrite the block gap in the form

gi(α)= 1
n

(
max
y∈Yi

Hi(y;w)−
∑
y∈Yi

αi(y)Hi(y;w)

)
(7)

providing understandable intuition of when the block gap
equals zero. This is the case when all the support vectors,
i.e., labelings corresponding to αi(y) > 0, are tied solu-
tions of the max oracle (4).

2.4. Convergence of BCFW
Lacoste-Julien et al. (2013) prove the convergence of the
BCFW algorithm at a rate O( 1

k ).
Theorem 1 (Lacoste-Julien et al. (2013), Theorem 2).
For each k ≥ 0, the iterate3 α(k) of Alg. 1 satisfies
IE
[
f(α(k))

]
− f(α∗) ≤ 2n

k+2n

(
C⊗f +h0

)
, where α∗ ∈M

is a solution of the problem (3), h0 := f(α(0)) − f(α∗)
is the suboptimality at the starting point of the algorithm,
C⊗f :=

∑n
i=1 C

(i)
f is the sum of the curvature constants4 of

f with respect to the domains M(i) of individual blocks.
The expectation is taken over the random choice of the
block i at iterations 1, . . . , k of the algorithm.

3Note that Alg. 1 does not maintain iterates α(k) explicitly.
They are stored in the form ofw(k) = Aα(k).

4For the definition of curvature constant, see Definition 2 in
App. B or (Lacoste-Julien & Jaggi, 2015, App. A)

The proof of Theorem 1 crucially depends on a standard de-
scent lemma applied to a block, stating that at each iteration
of BCFW, for any picked block i and any scalar γ ∈ [0, 1],
the following inequality holds:

f(α(k+1)) ≤ f(α(k))− γgi(α(k)) + γ2

2 C
(i)
f . (8)

We rederive inequality (8) as Lemma 3 in App. B. Note
that α(k+1) ∈M is defined by a line search, which is why
the bound (8) holds for any scalar γ ∈ [0, 1].

Taking the expectation of (8) w.r.t. the random choice of
block i (sampled uniformly on [n]), we get the inequality

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− γ

ng(α(k)) + γ2

2nC
⊗
f (9)

which can be used to get the convergence theorem.

3. Block gaps in BCFW
In this section, we propose three ways to improve the
BCFW algorithm: adaptive sampling (Sec. 3.1), pairwise
and away steps (Sec. 3.2) and caching (Sec. 3.3).

3.1. Adaptive non-uniform sampling
Motivation. When optimizing finite sums such as (1), it
is often the case that processing some summands does not
lead to significant progress of the algorithm. At each it-
eration, the BCFW algorithm selects a training object and
performs the block-coordinate step w.r.t. the corresponding
dual variables. If these variables are already close to being
optimal, then BCFW does not make significant progress at
this iteration. Usually, it is hard to identify whether pro-
cessing the summand would lead to an improvement with-
out actually doing computations on it. The BCFW algo-
rithm obtains at each iteration the block gap (6) quantify-
ing the suboptimality on the block. In what follows, we use
the block gaps to randomly choose a block (an object of the
training set) at each iteration in such a way that the blocks
with larger suboptimality are sampled more often (the sam-
pling probability of a block is proportional to the value of
the current gap estimate).

Convergence. Assume that at iteration k of Alg. 1, we
have the probability p(k)

i of sampling block i. By minimiz-
ing the descent lemma bound (8) w.r.t. γ for each i inde-
pendently under the assumption that gi(α(k)) ≤ C

(i)
f , and

then taking the conditional expectation w.r.t. i, we get

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− 1

2

n∑
i=1

p
(k)
i

g2i (α(k))

C
(i)
f

. (10)

Intuitively, by adapting the probabilities p(k)
i , we can ob-

tain a better bound on the expected improvement of f . In
the ideal scenario, one would choose deterministically the
block i with the maximal value of g2

i (α(k))/C
(i)
f .
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(a) Convergence plots
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(b) Quality of gap estimates
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Figure 1. Plot (a) shows exploitation/staleness trade-off for the gap sampling approach. We report the duality gap against the number of
effective passes over the data for uniform sampling and for gap sampling with the different frequencies of batch passes updating the gap
estimates (every pass over data, every 5, 10, 100 passes, no batch updates). Plot (b) shows the quality of heuristic gap estimates obtained
by the same methods. We report the ratio of the heuristic gap estimate to the true gap value. Plot (c) shows the factor of improvement of
exact gap sampling predicted by Theorem 2 for real gaps appearing during a run of BCFW with either uniform or gap sampling.

In practice, the curvature C(i)
f is unknown, and having ac-

cess to all gi(α(k))’s at each step is prohibitively expensive.
However, the values of the block gaps obtained at the pre-
vious iterations can serve as estimates of the block gaps at
the current iteration. We use them in the following non-
uniform gap sampling scheme: p(k)

i ∝ gi(α
(ki)). where ki

records the last iteration at which the gap i was computed.
Alg. 2 in App. D summarizes the method.

We also motivate this choice by Theorem 2 below which
shows that BCFW with (exact) gap sampling converges
with a better constant in the rate than BCFW with uniform
sampling when the gaps are non-uniform enough (and is
always better when the curvatures C(i)

f ’s are uniform). See
the proof and discussion in App. E.

Theorem 2. Consider the same notation as in Theorem 1.
Assume that at each iterate α(k), BCFW with gap sam-
pling (Alg. 2) has access to the exact values of the block
gaps. Then, at each iteration, it holds that IE

[
f(α(k))

]
−

f(α∗) ≤ 2n
k+2n

(
C⊗f χ

⊗ + h0

)
where the constant χ⊗ is

an upper bound on IE
[

χ(C
(:)
f )

χ(g:(α(k)))3

]
. The non-uniformity

measure χ(x) of a vector x ∈ Rn+ is defined as χ(x) :=√
1 + n2 Var

[
p
]

where p := x
‖x‖1 is the probability vec-

tor obtained by normalizing x.

Adaptive procedure. Note that this procedure is adap-
tive, meaning that the criterion for choosing an object to
optimize changes during the optimization process. Our
adaptive approach differs from more standard techniques
that sample proportional to the Lipschitz constants, as e.g.,
in Nesterov (2012). In App. C, we illustrate the advan-
tage of this property by constructing an example where the
convergence of gap sampling can be shown tightly to be n
times faster than when using Lipschitz sampling.

Exploitation versus staleness trade-off. In practice,
having access to the exact block gaps is intractable because
it requires a full pass over the dataset after every block up-
date. However, we have access to the estimates of the block
gaps computed from past oracle calls on each block. No-

tice that such estimates are outdated, i.e., might be quite
far from the current values of the block gaps. We call this
effect “staleness”. One way to compensate staleness is to
refresh the block gaps by doing a full gap computation (a
pass over the dataset) after several block-coordinate passes.
These gap computations were often already done during the
optimization process, e.g., to monitor convergence.

We demonstrate the exploitation/staleness trade-off in our
exploratory experiment reported in Figure 1. On the OCR
dataset (Taskar et al., 2003), we run the gap sampling al-
gorithm with a gap computation pass after 1, 5, 10 and
100 block-coordinate passes (Gap 1, Gap 5, Gap 10, Gap
100) and without any gap computation passes (Gap Inf).
As a baseline, we use BCFW with uniform sampling (Uni-
form). Figure 1a reports the duality gap after each num-
ber of effective passes over the data.5 Figure 1b shows the
ratio of the exact value of the duality gap to the heuris-
tic gap estimate defined as the sum of the current gap esti-
mates. We observe that when the gap computation is never
run, the gap becomes significantly underestimated and the
algorithm does not converge. On another extreme, when
performing the gap computation after each pass of BCFW,
the algorithm wastes too many computations and converges
slowly. Between the two extremes, the method is not very
sensitive to the parameter (we have tried 5, 10, 20, 50) al-
lowing us to always use the value of 10.

Comparing adaptive methods to BCFW with uniform sam-
pling, we observe a faster convergence. Figure 1c reports
the improvement of gap sampling at each iteration w.r.t.
uniform sampling that is predicted by Theorem 2. Specif-
ically, we report the quantity χ(g:(α

(k)))3/χ(C
(:)
f ) with the

block gaps estimated at the runs of BCFW with both uni-
form and gap sampling schemes. To estimate the curva-
ture constants C(i)

f , we use the upper bounds proposed

by Lacoste-Julien et al. (2013, App. A): 4R2
i

λn2 where Ri :=
maxy∈Yi

‖ψi(y)‖2. We approximate Ri by picking the
largest value ‖ψi(y)‖2 corresponding to a labeling y ob-
served within the run of BCFW.

5An effective pass consists in n calls to the max oracle.
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Related work. Non-uniform sampling schemes have
been used over the last few years to improve the conver-
gence rates of well known randomized algorithms (Nes-
terov, 2012; Needell et al., 2014; Zhao & Zhang, 2015).
Most of these approaches use the Lipschitz constants of
the gradients to sample more often functions for which
gradient changes quickly. This approach has two main
drawbacks. First, Lipschitz constants are often unknown
and heuristics are needed to estimate them. Second, such
schemes are not adaptive to the current progress of the al-
gorithm. To the best of our knowledge, the only other ap-
proach that uses an adaptive sampling scheme to guide
the optimization with convergence guarantees is the one
from Csiba et al. (2015), in the context of the stochastic
dual coordinate ascent (SDCA) algorithm. A cyclic ver-
sion of BCFW has been analyzed by Beck et al. (2015)
while Wang et al. (2014) analyzed its mini-batch form.

3.2. Pairwise and away steps
Motivation. In the batch setting, the convergence rate of
the Frank-Wolfe algorithm is known to be sublinear when
the solution is on the boundary (Wolfe, 1970), as is the
case for SSVM. Several modifications have been proposed
in the literature to address this issue. All these meth-
ods replace (or complement) the FW step with a step of
another type: pairwise step (Mitchell et al., 1974), away
step (Wolfe, 1970), fully-corrective step (Holloway, 1974)
(see Lacoste-Julien & Jaggi (2015) for a recent review and
the proof that all these methods have a linear rate on the ob-
jective (3) despite not being strongly convex). A common
feature of these methods is the ability to remove elements
of the active set (support vectors in the case of SSVM)
in order to reach the boundary, unlike FW which oscil-
lates while never completely reaching the boundary. As we
expect the solution of SSVM to be sparse, these variants
seem natural in our setting. In the rest of this section, we
present the pairwise steps in the block-coordinate setting
(the away-step version is described in Alg. 4 of App. 4).

Pairwise steps. A (block) pairwise step consists in re-
moving mass from the away corner on block i and trans-
ferring it to the FW corner obtained by the max ora-
cle (4). The away corner is the element of the active
set Si := {y ∈ Yi | αi(y) > 0} ⊆ Yi worst aligned
with the current descent direction, which can be found
by solving yai := argminy∈Si Hi(y;w). This does not
require solving a combinatorial optimization problem be-
cause the size of the active set is typically small, e.g.,
bounded by the number of iterations performed on the
block i. Analogously to the case of BCFW, the opti-
mal step size γ for the pairwise step can be computed
explicitly by clipping λ(wa−ws)Tw(k)+`s−`a

λ‖wa−ws‖2 to the seg-

ment [0, α
(k)
i (yai )] where the upper bound α(k)

i (yai ) cor-
responds to the mass of the away corner before the step
and the quantities ws := 1

λnψi(y
∗
i ), `s := 1

nLi(y
∗
i ) and

wa := 1
λnψi(y

a
i ), `a := 1

nLi(y
a
i ) represent the FW and

away corners. Alg. 3 in App. D summarizes the block-
coordinate pairwise Frank-Wolfe (BCPFW) algorithm.

In contrast to BCFW, the steps of BCPFW cannot be ex-
pressed in terms of the primal variables w only, thus it is
required to explicitly store the dual variables αi. Storing
the dual variables is feasible, because they are extremely
sparse, but still can lead to computational overheads caused
by the maintenance of the data structure.

The standard convergence analysis for pairwise and away-
step FW cannot be easily extended to BCFW. We show the
geometric decrease of the objective in Theorem 4 of App. G
only when no block would have a drop step (a.k.a. ‘bad
step’); a condition that cannot be easily analyzed due to
the randomization of the algorithm. We believe that novel
proof techniques are required here, even though we did ob-
serve empirically a linear convergence rate when λ is big
enough.

Related work. Ñanculef et al. (2014, Alg. 4) used the
pairwise FW algorithm on the dual of binary SVM (in
batch mode, however). It is related to classical work-
ing set algorithms, such as the SMO algorithm used to
train SVMs (Platt, 1999), also already applied on SSVMs
in Taskar (2004, Ch. 6). Franc (2014) recently proposed
a version of pairwise FW for the block-coordinate setting.
Their SDA-WSS2 algorithm uses a different criterion for
choosing the away corner than BCPFW: instead of min-
imizing Hi over the active set Si, they compute the im-
provement for all possible away corners and pick the best
one. Their FASOLE algorithm also contains a version of
gap sampling in the form of variable shrinking: if a block
gap becomes small enough, the block is not visited again,
until all the counters are reset.

3.3. Caching
Motivation. At each step, the BCFW and BCPFW algo-
rithms call the max oracle to find the Frank-Wolfe corner.
In cases where the max oracle is expensive, this step be-
comes a computational bottleneck. A natural idea to over-
come this problem consists in using a “cheaper oracle”
most of the time hoping that the resulting corner would be
good enough. Caching the results of the max oracle im-
plements this idea by reusing the previous calls of the max
oracle to store potentially promising corners.

Caching. The main principle of caching consists in main-
taining a working set Ci ⊂ Yi of labelings/corners for
each block i, where |Ci| � |Yi|. A cache oracle ob-
tains the cache corner defined as a corner from the work-
ing set best aligned with the descent direction, i.e., yci :=
argmaxy∈Ci Hi(y;w). If the obtained cache corner
passes a cache hit criterion, i.e., there is a cache hit, we do
a Frank-Wolfe (or pairwise) step based on the cache corner.
A step defined this way is equivalent to the corresponding



Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

step on the convex hull of the working set, which is a subset
of the block domain Yi. If a cache hit criterion is not satis-
fied, i.e., there is a cache miss, we call the (possibly expen-
sive) max oracle to obtain a Frank-Wolfe corner over the
full domain Yi. Alg. 5 in App. D summarizes the BCFW
method with caching.

Note that, in the case of BCPFW, the working set Ci is
closely related to the active set Si. On the implementa-
tion side, we maintain both sets in the same data structure
and keep Si ⊆ Ci.

Cache hit criterion. An important part of a caching
scheme is the criterion deciding whether the cache look
up is sufficient or the max oracle needs to be called. In-
tuitively, we want to use the cache whenever it allows op-
timization to make large enough progress. We use as mea-
sure of potential progress the inner product between the
candidate direction and the negative gradient (which would
give the block gap gi (6) if the FW corner is used). For a
cache step, it gives ĝ(k)

i := λ(w
(k)
i −wc)Tw(k)−`i(k)+`c,

which is defined by quantitieswc =
ψi(y

c
i )

λn , `c = 1
nLi(y

c
i )

similar to the ones defining the block gap. The quan-
tity ĝ(k)

i is then compared to a cache hit threshold defined
as max(Fg

(ki)
i , νng

(k0)) where ki identifies the iteration
when the max oracle was last called for the block i, k0

is the index of the iteration when the full batch gap was
computed, F > 0 and ν > 0 are cache parameters.

The following theorem gives a safety convergence result
for BCFW with caching (see App. F for the proof).
Theorem 3. Consider the same notation as in Theorem 1.
Let ν̃ := 1

nν ≤ 1. The iterate α(k) of Alg. 5 satisfies
IE
[
f(α(k))

]
− f(α∗) ≤ 2n

ν̃k+2n

(
1
ν̃C
⊗
f + h0

)
for k ≥ 0.

Note that the convergence rate of Theorem 3 differs from
the original rate of BCFW (Theorem 1) by the constant ν̃.
If ν̃ equals one the rate is the same, but the criterion effec-
tively prohibits cache hits. If ν̃ < 1 then the convergence is
slower, meaning that the method with cache needs more it-
erations to converge, but the oracles calls might be cheaper
because of the cache hits.

Effect of F and ν. The parameter ν controls the global
component and acts as a safety parameter to ensure con-
vergence (Theorem 3). The parameter F controls, instead,
the local (block-dependent) component of the criterion.
Figure 2 illustrates the effect of the parameters on OCR
dataset (Taskar et al., 2003) and motivates their choice. At
one extreme, if either F or ν are too large the cache is al-
most never hit. At another extreme, if both values are small
the cache is hit almost always, thus the method almost stops
calling the oracle and does not converge. Between the two
extremes, one of the components usually dominates. We
observe empirically that the regime with the local compo-
nent dominating leads to faster convergence. Our exper-
iments show that the method is not very sensitive to the

(a) Regimes of the cache

Effective passes over dataset

20 40 60

D
u

a
lit

y
 g

a
p

10 -1

10 0
No cache

Only cache

Global

Local

(b) Convergence plots

Figure 2. Plot (a) illustrates different regimes induced by the
cache parameters F and ν. Plot (b) shows the evolution of the
duality gap within BCFW with gap sampling and with cache pa-
rameters in different regimes.

choice of the parameters, so, in what follows, we use val-
ues F = 0.25 and ν = 0.01.

Related work. In the context of SSVM, the idea of
caching was successfully applied to the cutting plane meth-
ods by Joachims et al. (2009), and, recently, to BCFW
by Shah et al. (2015). In contrast to Shah et al. (2015),
our method chooses whether to call the oracle or to use the
cache in an adaptive way by looking at the gap estimates
of the current blocks. In the extreme case, when just one
block is hard and requires computation and all the rest are
easy, our method would be able to call an oracle on the hard
block and to use the cache everywhere else. This will result
to n times less oracle calls, compared to their strategy.

4. Regularization path
According to the definition of Efron et al. (2004), a regular-
ization path is a set of minimizers of a regularized objective
in the form of (1) for all possible values of the regulariza-
tion parameter λ. Similarly to LASSO and binary SVM,
the general result of Rosset & Zhu (2007, Proposition 1) is
applicable to the case of SSVM and implies that the exact
regularization path is piecewise linear in 1/λ. However, re-
covering the exact path is, up to our knowledge, intractable
in the case of SSVM. In this paper, we construct an ε-
approximate regularization path, meaning that, for each
feasible λ, we have a corresponding primal variables w
which is ε-approximate, i.e., the suboptimality fλ(w)−f∗λ
does not exceed ε. We use a piecewise constant approxima-
tion except for the first piece which is linear. The approx-
imation is represented by a set of breakpoints {λj}J+1

j=0 ,
λ0 = +∞, λJ+1 = 0, λj+1 ≤ λj , and a set of parameter
vectors {wj}Jj=1 with the following properties: for each
λ ∈ [λj+1, λj ], j ≥ 1, the vector wj is ε-approximate; for
λ ≥ λ1, the vector λ1

λ w
1 is ε-approximate.

Our algorithm consists of two steps: (1) at the initializa-
tion step, we find the maximal finite breakpoint λ∞ := λ1

and the vector w∞ := w1; (2) at the induction step, we
compute a value λj+1 and a vector wj+1 given quanti-
ties λj and wj . At both steps of our algorithm, we explic-
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itly maintain dual variables α that correspond tow. Alg. 7
in App. D presents the complete procedure.

Initialization of the regularization path. First, note
that, for λ = ∞, the KKT conditions for (1) and (3) im-
ply that w = 0 is a solution of the problem (1). In what
follows, we provide a finite value for λ∞ and explicitly
construct α∞ and w∞ such that λ

∞

λ w
∞ is ε-approximate

for λ ≥ λ∞.

Let ỹi = argmaxy∈Yi
Hi(y;0) = argmaxy∈Yi

Li(y) be
the output of the max oracle forw = 0. First, we construct
a dual point α∞ ∈ M by setting α∞i (ỹi) = 1. For any
value of λ∞, the corresponding weight vector can be
easily computed: w∞ = 1

λ∞n

∑n
i=1ψi(ỹi). Identity (7)

provides the duality gap:

g(α∞, λ∞,w∞) = 1
n

n∑
i=1

(
max
y∈Yi

(
Li(y)− 〈w∞,ψ(y)〉

)
− Li(ỹi) + 〈(w∞,ψ(ỹi)〉

)
.

The inequality maxx(f(x) + g(x)) ≤ maxx f(x) +
maxx g(x) and the equality maxy∈Yi

Li(y) = Li(ỹi)
bound the gap:

g(α∞, λ∞,w∞) ≤ 1
n

∑
i

(
max
y∈Yi

(−〈w∞,ψ(y)〉)+

〈w∞,ψ(ỹi)〉
)

= 1
nλ∞

n∑
i=1

θi + 1
λ∞

∥∥∥ψ̃∥∥∥2

where the quantities θi = maxy∈Yi

(
− 〈ψ̃,ψ(y)〉

)
and

ψ̃ := 1
n

∑
iψi(ỹi) are easily computable. To ensure that

g(α∞, λ, λ
∞

λ w
∞) ≤ ε for λ ≥ λ∞, we can now set

λ∞ := 1
ε

(
‖ψ̃‖2 + 1

n

n∑
i=1

θi

)
.

Induction step. We utilize the intuition that the expres-
sion (7) provides control on the Frank-Wolfe gap for differ-
ent values of λ if the primal variablesw and, consequently,
the results of the max oracles stay unchanged. Proposi-
tion 1 formalizes this intuition.
Proposition 1. Assume that Li(yi) = 0, i = 1, . . . , n, i.e.,
the loss on the ground truth equals zero. Let ρ := λnew

λold < 1.
Then, setting αi(y) := ραold

i (y), y 6= yi, and αi(yi) :=
1−

∑
y 6=yi

αi(y), we then have wnew = wold and

g(α, λnew) = g(αold, λold) + (1− ρ)∆(αold, λold) (11)

where

∆(αold, λold) := 1
n

n∑
i=1

∑
y∈Yi

αold
i (y)Hi(y;wold).

Proof. Consider the problem (3) for both λnew and λold.
Since ψi(yi) = 0 and Anew = 1

ρA
old, we have that wold =

Aoldαold = Anewα = wnew. The assumption Li(yi) = 0
implies equalities Hi(yi;w

old) = 0. Under these condi-
tions, the equation (11) directly follows from the computa-
tion of g(α, λnew)− g(αold, λold) and the equality (7).

Assume that for the regularization parameter λold the
primal-dual pair αold, wold is κε-approximate, 0 < κ < 1,
i.e., g(αold, λold) ≤ κε. Proposition 1 ensures that
g(α, λnew) ≤ ε whenever

ρ = 1− ε−g(αold, λold)
∆(αold, λold)

≤ 1− ε(1−κ)
∆(αold, λold)

. (12)

Having κ < 1 ensures that ρ < 1, i.e., we get a new break
point λnew < λold. If the equation (12) results in ρ ≤ 0
then we reach the end of the regularization path, i.e., wold

is ε-approximate for all 0 ≤ λ < λold.

To be able to iterate the induction step, we apply one of
the algorithms for the minimization of the SSVM objective
for λnew to obtain κε-approximate pair αnew, wnew. Initial-
izing from α, wold provides fast convergence in practice.

Related work. Due to space constraints, see App. A.

5. Experiments
The experimental evaluation consists of two parts: Sec-
tion 5.1 compares the different algorithms presented in Sec-
tion 3; Section 5.2 evaluates our approach on the regular-
ization path estimation.

Datasets. We evaluate our methods on four datasets
for different structured prediction tasks: OCR (Taskar
et al., 2003) for handwritten character recognition,
CoNLL (Tjong Kim Sang & Buchholz, 2000) for text
chunking, HorseSeg (Kolesnikov et al., 2014) for binary
image segmentation and LSP (Johnson & Everingham,
2010) for pose estimation. The models for OCR and
CoNLL were provided by Lacoste-Julien et al. (2013). We
build our model based on the one by Kolesnikov et al.
(2014) for HorseSeg, and the one by Chen & Yuille (2014)
for LSP. For OCR and CoNLL, the max oracle consists
of the Viterbi algorithm (Viterbi, 1967); for HorseSeg –
in graph cut (Boykov & Kolmogorov, 2004), for LSP – in
belief propagation on a tree with messages passed by a gen-
eralized distance transform (Felzenszwalb & Huttenlocher,
2005). Note that the oracles of HorseSeg and LSP require
positivity constraints on a subset of the weights in order
to be tractable. The BCFW algorithm with positivity con-
straints is derived in App. H. We provide a detailed descrip-
tion of the datasets in App. I with a summary in Table 1.

The problems included in our experimental study vary in
the number of objects n (from 100 to 25,000), in the num-
ber of features d (from 102 to 106), and in the computa-
tional cost of the max oracle (from 10−4 to 2 seconds).

5.1. Comparing the variants of BCFW
In this section, we evaluate the three modifications of
BCFW presented in Section 3. We compare 8 methods
obtained by all the combinations of three binary dimen-
sions: gap-based vs. uniform sampling of objects, BCFW
vs. BCPFW, caching oracle calls vs. no caching.



Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

Effective passes over data
0 500 1000 1500 2000

T
ru

e 
du

al
ity

 g
ap

10 -3

10 -2

10 -1

Time (in h)
0 2 4 6

T
ru

e 
du

al
ity

 g
ap

10 -3

10 -2

10 -1

(a) OCR-large, λ = 0.001

Effective passes over data
50 100 150 200

T
ru

e 
du

al
ity

 g
ap

10 -5

10 -4

10 -3

Time (in h)
0 0.5 1 1.5 2

T
ru

e 
du

al
ity

 g
ap

10 -5

10 -4

10 -3

(b) HorseSeg-medium, λ = 10

Effective passes over data
0 200 400 600

T
ru

e 
du

al
ity

 g
ap

10 -3

10 -2

10 -1

Time (in h)
0 10 20 30 40

T
ru

e 
du

al
ity

 g
ap

10 -3

10 -2

10 -1

(c) LSP-small, λ = 100

Figure 3. Summary of the results of Section 5.1: the duality gap against the number of effective passes over data (top) and time (bottom).

We report the results of each method on 6 datasets (includ-
ing 3 sizes of HorseSeg) for three values of the regulariza-
tion parameter λ: the value leading to the best test perfor-
mance, a smaller and a larger value. For each setup, we
report the duality gap against both number of oracle calls
and elapsed time. We run each method 5 times with differ-
ent random seeds influencing the order of sampled objects
and report the median (bold line), minimum and maximum
values (shaded region). We summarize the results in Fig-
ure 3 and report the rest in App. J.

First, we observe that, aligned with our theoretical re-
sults, gap sampling always leads to faster convergence
(both in terms of time and the number of effective passes).
The effect is stronger when n is large (Figure 3b). Sec-
ond, caching always helps in terms of number of effective
passes, but an overhead caused by maintaining the cache is
significant when the max oracle is fast (Figure 3a). In the
case of expensive oracle (Figure 3c), the cache overhead
is negligible. Third, the pairwise steps (BCPFW) lead to
an improvement to get smaller values of duality gaps. The
effect is stronger when the problem is more strongly con-
vex, i.e., λ is bigger. However, maintaining the active sets
results in computational overheads, which sometimes are
significant. Note that the overhead of cache and active sets
are shared, because they are maintained in the same data
structure. Using a cache also greatly limits the memory re-
quirements of BCPFW, because, when the cache is hit, the
active set is guaranteed not to grow.

Recommendation. For off-the-shelf usage, we recom-
mend to use the BCPFW + gap sampling + cache method
when oracle calls are expensive, and the BCFW + gap sam-
pling method when oracle calls are cheap.
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Figure 4. On HorseSeg-small, we compare ε-approximate regu-
larization path against grid search with/without warm start. We
report the cumulative running time (left) and the cumulative ef-
fective number of passes (right) required to get to each value of
the regularization parameter λ.

5.2. Regularization path
In this section, we evaluate our regularization path al-
gorithm presented in Section 4. We compare an ε-
approximate regularization path with ε = 0.1 against the
standard grid search approach with/without warm start (we
use a grid of 31 values of λ: 215, 214, . . . , 2−15). In Fig-
ure 4, we report the cumulative elapsed time and cumu-
lative number of effective passes over the data required
by the three methods to reach a certain value of λ on
the HorseSeg-small dataset (starting from the initialization
value for the path method and the maximum values of the
grid for the grid search methods). The methods and addi-
tional experiments are detailed in App. K.

Interpretation. First, we observe that warm start speeds
up the grid search. Second, the cost of computing the
full regularization path is comparable with the cost of grid
search. However, the regularization path algorithm finds
solutions for all values of λ without the need to predefine
the grid.
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tion path method.

A. Related work for regularization path
Efron et al. (2004), in their seminal paper, introduced the
notion of regularization path and showed that the regu-
larization path of LASSO (Tibshirani, 1996) is piecewise
linear. Hastie et al. (2004) proposed the path following
method to compute the exact regularization path for the bi-
nary SVM with L2-regularization. Exact path following
algorithms suffer from numerical instabilities as they re-
peatedly invert a potentially badly-conditioned matrix (All-
gower & Georg, 1993). In addition, Gärtner et al. (2012)
show that, in the worst case, the regularization path for bi-
nary SVM contains an exponential number of break points.
Although the exact path following methods for SVM are
still developed (Sentelle et al., 2015), approximate meth-
ods might be more suited for practical use cases. Kara-
suyama & Takeuchi (2011) proposed a method providing
a trade-off between accuracy of the path and its computa-
tional cost. Recently, Giesen et al. (2012) have developed
a general framework to construct a piecewise-constant ε-
approximate path with at most O(1/

√
ε) break points and

applied it, e.g., to binary SVM.

In contrast to binary SVM, regularization paths for multi-
class SVMs are more complex and less studied. Lee & Cui
(2006) proposed a path following method for multi-class
SVM in the MSVM formulation of Lee et al. (2004). Wang
& Shen (2006) analyzed the regularization path for the L1
version of MSVM. Finally, Jun-Tao & Ying-Min (2010)
constructed the regularization path for the multi-class SVM
with huberized loss. We are not aware of any work comput-
ing the regularization path for SSVM or, for its predecessor
multi-class SVM in the formulation of Crammer & Singer
(2001).

The induction step of our method is similar to Alg. 1
of (Giesen et al., 2012) applied to the case of binary SVM.
They also construct a piecewise linear ε-approximate path
by alternating the SVM solver and a procedure to iden-
tify the region where the output of the solver is accurate
enough.

In contrast to our method, Giesen et al. (2012) construct
the path only for the predefined segment of the values of λ.
We do not require such a segment as input and are able
to find the largest and smallest value automatically. An-
other difference to (Giesen et al., 2012) consists in using
the λ-formulation of SVM instead of the C-formulation.
In the two formulations, the accuracy parameter ε is scaled
differently for the different values of the regularization pa-
rameters. The λ-formulation requests higher accuracy for
the small values of λ and, thus, creates more break points
in that region.

B. Block descent lemma for BCFW
Definition 2 (Block curvature constant). Consider a con-
vex function f defined on a separable domain M =

M(1) × · · · × M(n). The curvature constant C(i)
f of the

function f w.r.t. the individual block of coordinatesM(i) is
defined by

C
(i)
f := sup 2

γ2

(
f(β)− f(α)− 〈β(i) −α(i),∇(i)f(α)〉

)
s.t. α ∈M, s(i) ∈M(i), γ ∈ [0, 1],

β = α+ γ(s[i] −α[i]). (13)

Here s[i] ∈ Rm and α[i] ∈ Rm are the zero-padded ver-
sions of s(i) ∈ M(i) and α(i) ∈ M(i), respectively. Note
that, although s[i] 6∈ M and α[i] 6∈ M, we have that
β := α+ γ(s[i] −α[i]) ∈M.

In the case of SSVM, the curvature constant C(i)
f can be
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upper bounded (tightly in the worst case) with 4R2
i

λn2 where
Ri := maxy∈Yi ‖ψi(y)‖2 (Lacoste-Julien et al., 2013,
Appendix A).6

For reference, we restate below the key descent lemma used
for the proof of convergence of BCFW and its variants. We
note in passing that this is an affine invariant analog of the
standard descent lemmas that use the Lipschitz continuity
of the gradient function to show progress during first order
optimization algorithms.

Lemma 3 (Block descent lemma). For any α ∈ M
and block i, let s(i) ∈ M(i) be the Frank-Wolfe corner
selected by the max oracle of block i at α. Let αLS
be obtained by the line search between α(i) ∈ M(i)

and s(i), i.e., f(αLS) = minγ∈[0,1] f(αγ) where
αγ := α + γ(s[i] − α[i]). Then, it holds that for each
γ ∈ [0, 1]:

f(αLS) ≤ f(α)− γgi(α) + γ2

2 C
(i)
f (14)

where C(i)
f is the curvature constant of the function f over

the factorM(i) and gi(α) is the block gap at the point α
w.r.t. the block i.

Proof. From Definition 2 of the curvature constant and the
expression (6) for the block gap, we have

f(αγ) =f(α+ γ(s[i] −α[i]))

≤f(α) + γ〈s(i) −α(i),∇(i)f(α)〉+ γ2

2 C
(i)
f

=f(α)− γgi(α) + γ2

2 C
(i)
f .

The inequality f(αLS) ≤ f(αγ) completes the proof.

C. Toy example for gap sampling
In this section, we construct a toy example of the structured
SVM problem where the adaptive gap-based sampling is n
times faster than non-adaptive sampling schemes such as
uniform sampling or curvature-based sampling (the latter
being the affine invariant analog of Lipschitz-based sam-
pling).

General idea. The main idea is to consider a training set
where there are n − 1 “easy” objects that need to be vis-
ited only once to learn to classify them, and one “hard”
object that requires at least K � 1 visits in order to get
the optimal parameter. We can design the example in such
a way that the curvature or Lipschitz constants are non-
informative about which example is hard, and which is

6More generally, let ‖ · ‖i be some norm defined on M(i).
Then suppose that Li is the Lipschitz-continuity constant with
respect to this norm for ∇(i)f(α) when only α(i) varies, i.e.,
‖∇(i)f(α) − ∇(i)f(α + s[i] − α[i])‖∗i ≤ Li‖s(i) − α(i)‖i
for all α ∈ M, s(i) ∈ M(i), where ‖ · ‖∗i is the dual norm
of ‖ · ‖i. Then similarly to Lemma 7 in Jaggi (2013), we have
C

(i)
f ≤ Li

(
diam‖·‖iM

(i)
)2.

easy. The non-adaptive sampling schemes will thus have
to visit the easy objects as often as the hard object, whereas
the gap sampling technique can adapt to focus only on
the single hard object after having visited the easy objects
once, thus yielding an overall min{n,K}-times speedup.

Note that large-scale learning datasets could have analo-
gous features as this toy example: a subgroup of objects
might be easier to learn than another, and moreover, they
might share similar information, so that after visiting a sub-
set, we do not need to linger on the other ones from the
same subset as all the information has already been ex-
tracted. We cannot know in advance which subgroups are
these subsets, and thus an adaptive scheme is needed.

C.1. Explicit construction
For simplicity, we set the weight of the regular-
izer λ to 1/n so that the scaling factor defining A
in Problem (3) is 1/λn = 1. The matrix A thus
consists of the difference feature maps, i.e., A :={
ψi(y) := φ(xi,yi)− φ(xi,y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

.
In our example, we use feature maps of dimensionality
d := K + 1 := |Yi|. Let Yi := {0, 1, . . . ,K} be the
set of labels for the object i and the label 0 be the correct
label. We consider the zero-one loss, i.e., Li(0) = 0 and
Li(k) = 1 for k ≥ 1. In the following, let {ej}dj=1 be the
standard basis vectors for Rd.

Hard and easy objects. We construct the feature
map φ(x,y) so that only the last coordinate of the pa-
rameter vector is needed to classify correctly the easy ob-
ject, whereas all the other coordinates are needed to clas-
sify correctly the hard object. By using a different set of
coordinates between the easy and the hard objects, we sim-
plify the analysis as the optimization for both block types
decouples (become independent). Specifically, we set the
feature map for the correct label to be φ(xi, 0) := 0 for
all objects i. We let i = 1 be the hard object and we set
φ(xi, k) := − 1√

2
ek for k = 1, . . . ,K. For the easy object,

i ∈ {2, . . . , n}, we use the constant φ(xi, k) := −eK+1

for all k ≥ 1. The normalization of the feature maps is
made so that the curvature constants for all the objects are
equal (see below). Note also here that ψ1(k) ⊥ ψi(l) for
any labels k, l, and thus the optimization over block 1 de-
couples with the one for the other blocks i = 2, . . . , n. The
SSVM dual (3) takes here the following simple form:

min
α∈Rm

α<0

1
n

K∑
k=1

(
1
4α1(k)

2 − α1(k)
)

+ 1
n ( 1

2u
2 − u) (15)

s.t.
K∑
k=0

αi(k) = 1 ∀i ∈ [n] , u =

n∑
i=2

K∑
k=1

αi(k) ,

where we have introduced the auxiliary variable u to high-
light the simple structure for the optimization over the easy
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blocks. The unique7 solution for the first (hard) block is
easily seen to be α∗1(k) = 1

K for k ≥ 1 and α∗1(0) = 0.
For the easy blocks, any feasible combination of dual vari-
ables that gives u∗ = 1 is a solution. This gives the optimal
parameter w∗ = Aα∗ = eK+1 + 1

K

∑K
k=1 ek.

Optimization on the hard object. The objective for the
hard object (block 1) in (15) is similar to the one used
to show a lower bound of Ω(1/t) suboptimality error af-
ter t iterations for the Frank-Wolfe algorithm for t smaller
than the dimensionality (e.g., see Lemma 3 and 4 in Jaggi
(2013)), hence showing that the optimization is difficult on
this block. The BCFW algorithm is initialized withw = 0,
which corresponds to putting all the mass on the correct
label, i.e., αi(0) = 1 and αi(k) = 0, k ≥ 1. At each
iteration of BCFW, the mass can be moved only towards
one corner, and all the corners (of the simplex) have ex-
actly one non-zero coordinate. This means that after t it-
erations of BCFW on the first block, at most t non-ground
truth dual variables can be non-zero. Minimizing the ob-
jective (15) over the first block with the constraint that at
most t of these variables are non-zero give the similar so-
lution α1(k) = 1/t for k = 1, . . . , t, which gives a sub-
optimality of 1

4n ( 1
t −

1
K ) for t ≤ K. Similarly, this also

yields the smallest FW gap8 possible for this block after t
iterations, which is 1

n
1
2t . This means that in order to get a

suboptimality error smaller than ε, one needs at least

t ≥ Ω(min{K, 1
nε}) (16)

BCFW iterations on the first block.9

Optimization on easy objects. Finally, we now show
that after one iteration on any easy object, the gaps gi on
all easy objects become zero (i.e., they are all optimal and
then stay optimal as the optimization is decoupled with the
first block). After this iteration, BCFW with gap sampling
visits all the easy objects exactly once and sets their gap
estimates to zero, thus never revisiting them again.

Note that before visiting any easy object i, we have
〈w,ψi(k)〉 = 0 for all k as the features for the hard ob-
ject are orthogonal and w is initialized to zero. Thus, at
the first visit of an easy object i ∈ {2, . . . , n}, we have
Hi(0;w) = 0 and Hi(k;w) = 1, k ≥ 1, and the max or-
acle returns some (any) label k ∈ {1, . . . ,K}. Following
the steps of Algorithm 1, we havews := 1

λnψ(k) = eK+1

and `s = 1
nLi(k) = 1

n . Then gi = 1
n and γ = 1 as

7Uniqueness can be proved by noticing that the objective is
strongly convex in α1 after removing α1(0) and replacing the
equality constraint with an inequality.

8Recall that the FW gap here is the same as the Lagrangian
duality gap (see Section 2.3), and so if one cares about the SSVM
primal suboptimality, one needs a small FW gap.

9In fact, BCFW also has a O( 1
nt
) gap after t iterations on the

first block by the standard FW convergence theorem, asC(1)
f = 1

n

as we show in (18).

wi = 0. The assignment wi = eK+1 implies the update
w ← w + eK+1 of the parameter vector. After such an
update, at all iterations, for all easy objects i ∈ {2, . . . , n}
and for all labels k ∈ {1, . . . ,K}, we have

Hi(k;w) = Li(k)− 〈w, eK+1〉 = 0 (17)

because the coordinate wK+1 is never updated again. Ac-
cording to (7), the equalities (17) imply that the block
gaps gi equal zero for all the easy objects.

Curvature constants. The simple structure of the ma-
trix A allows us to explicitly compute the curvature con-
stants C(i)

f corresponding to both easy and hard objects.

The SSVM dual (3) is a quadratic function with a constant
Hessian H := λATA, so the second-order Taylor expan-
sion of f at a point α allows us to rewrite the definition 13
as

C
(i)
f = sup

α∈M
s(i)∈M(i)

(s[i] −α[i])
TH(s[i] −α[i])

= λ sup
α∈M

s(i)∈M(i)

‖A(s[i] −α[i])‖22

= λmax
k , l
‖φ(xi, k)− φ(xi, l)‖22.

The last line uses the property that the maximum of a con-
vex function over a convex set is obtained at a vertex.

In the case of the hard object, we can get

C
(1)
f = λ‖φ(x1, 1)− φ(x1, 2)‖22 = 1

n . (18)

In the case of an easy object, we can get

C
(i)
f = λ‖φ(xi, 1)− φ(xi, 0)‖22 = 1

n . (19)

Adaptive and non-adaptive sampling. Let t be the
number of steps needed on the hard block. By (16), we
need t ≥ Ω(min{K, 1

nε}) to get a suboptimality smaller
than ε. The uniform sampling scheme visits all the objects
with the same probability. In the setting constructed above,
it makes, on average, t visits to each easy object prior to
visiting the hard object t times. Thus, the overall scheme
will call the max-oracle O(nt) times. All the curvature
constants C(i)

f are equal, so the sampling proportional to
the curvature constants is equivalent to uniform sampling.

The adaptive sampling scheme visits each easy object only
once after the first visit to any of them. After such a visit to
any easy object, its local gap estimate equals zero and this
object is never visited again. The gap sampling scheme
thus makes an overall O(n + t) oracle calls. The adaptive
scheme is thus approximately min{n, t} = min{n,K, 1

nε}
times faster than the non-adaptive ones. The speed-up can
be made arbitrary large by setting both n and K large
enough, and ε small enough.
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Lipschitz and curvature constants. The non-uniform
sampling techniques used in the work of Nesterov (2012);
Needell et al. (2014); Zhao & Zhang (2015) use Lipschitz
constants of partial derivatives to obtain the sampling prob-
abilities. In our discussion above, we use the curvature con-
stants. Lacoste-Julien & Jaggi (2015, Appendix C) note
that the curvature constants are affine invariant quantities
and, thus, are more suited for the analysis of Frank-Wolfe
methods compared to Lipschitz constants (which depend
on a choice of norm). We illustrate this point on our toy
example by explicitly computing the Lipschitz constants
over blocks for the `2 and `1 norm. For both easy and hard
blocks, the Lipschitz constant of the gradient with respect
to the `2 norm equals the largest eigenvalues of the cor-
responding block Hessians. For an easy object, the block
Hessian is a rank one matrix with the only non-zero eigen-
value equal to λ(|Yi| − 1) = K

n . For the hard object, the
block Hessian is a diagonal matrix with non-zero entries
equal to λ

2 = 1
2n . Here the Lipschitz constant for the easy

block is about K times bigger than the one for the hard
block, and thus for a large number of labels K, sampling
according to Lipschitz constants can be much slower than
sampling according to the curvature constants, which was
itself slower than the adaptive sampling scheme.

This poor scaling of the Lipschitz constants is partly due
to the bad choice of norm in relationship to the opti-
mization domain. d’Aspremont et al. (2013) suggests to
use the atomic norm of the domain M for the analysis.
In the case of the simplex, we get the `1 norm to mea-
sure the diameter of the domain, and its dual norm (`∞)
to measure the Lipschitz constant of the gradient. With
this norm, the Lipschitz constant stays as 1

2n for the hard
block, but decreases to the more reasonable 1

n for the easy
blocks. As explained in footnote 6, we can use the bound
C

(i)
f ≤ Li

(
diam‖·‖iM(i)

)2
for the curvature constant. As

the diameter for the simplex measured with the `1-norm
is 2, we get the bound C(1)

f ≤ 2
n for the hard block, very

close to its exact value of 1
n as derived in (18). The `1 norm

thus appears as a more appropriate choice for this problem.

D. Detailed algorithms.
In this section, we give the detailed versions of our BCFW
variants applied to the SSVM objective presented in the
main paper. Algorithm 2 describes BCFW with adap-
tive gap sampling. We give the block-coordinate version
of pairwise FW (BCPFW) in Algorithm 3, and of away-
step FW (BCAFW) in Algorithm 4. We note that these
two algorithms are simply the blockwise application of the
PFW and AFW algorithms as described in Lacoste-Julien
& Jaggi (2015), but in the context of SSVM which compli-
cates the notation. Algorithm 5 presents the BCFW algo-
rithm with caching. Algorithm 7 presents our method for
computing the regularization path and Algorithm 6 presents
the initialization of the regularization path.

Algorithm 2 Block-coordinate Frank-Wolfe (BCFW) al-
gorithm with gap sampling for structured SVM

1: Let w(0):=wi
(0):=0; `(0):=`i

(0):=0; g
(0)
i :=+∞;

2: ki :=0 // the last time gi was computed
3: for k := 0, . . . ,∞ do
4: Pick i at random with probability ∝ g

(ki)
i

5: Solve y∗i := argmax
y∈Yi

Hi(y;w(k))

6: Let ki := k
7: Let ws := 1

λnψi(y
∗
i ) and `s := 1

nLi(y
∗
i )

8: Let g(ki)
i := λ(w

(k)
i −ws)Tw(k) − `(k)

i + `s

9: Let γ :=
g
(ki)
i

λ‖w(k)
i −ws‖2

and clip to [0, 1]

10: Update wi(k+1) := (1− γ)wi
(k) + γws

11: and `i
(k+1) := (1− γ)`i(k) + γ `s

12: Update w(k+1) := w(k) +wi
(k+1) −wi(k)

13: and `(k+1) := `(k) + `i
(k+1) − `i(k)

14: if update global gap then
15: for i := 1, . . . , n do
16: Let ki := k + 1
17: Solve y∗i := argmax

y∈Yi

Hi(y;w(ki))

18: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

19: g
(ki)
i := λ(w

(ki)
i −ws)Tw(ki) − `(ki)i + `s

20: end for
21: end if
22: end for

Note that the three modifications proposed in our pa-
per (gap sampling, caching, pairwise/away steps) can be
straightforwardly put together in any combination. In our
experimental study, we evaluate all the possibilities.

When using gap sampling or caching and to guarantee con-
vergence, we have to do a full pass over the data every so
often to refresh the global gap estimates and to compensate
for the staleness effect. In the experiments, we perform this
computation every 10 passes over the data (this is the “up-
date global gap” condition in the algorithms). This global
gap can also be used as a certificate (upper bound) on the
current suboptimality. We thus use the same frequency of
global gap computation (every 10 passes) when we run a
SSVM solver with a specific convergence tolerance thresh-
old. This is used in our regularization path algorithm which
runs a SSVM solver up to a fixed convergence tolerance at
each breakpoint.

In our description of the regularization path algorithms (Al-
gorithm 6 and Algorithm 7), we explicitly describe how
to update the active sets over the dual variables when the
regularization parameter is updated. This is needed when
using a SSVM solver that requires the active set over the
dual variables (such as BCPFW or BCAFW). When using
the simpler BCFW solver, then lines 14–17 of Algorithm 6
and lines 17–21 of Algorithm 7 can simply be omitted.
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Algorithm 3 Block-coordinate pairwise Frank-Wolfe
(BCPFW) algorithm for structured SVM

1: Let w(0) := wi
(0) := 0; `(0) := `i

(0) := 0;
2: Si(0) := {yi}; // active sets
3: α(0)

i (y) := 0, y 6= yi; α
(0)
i (yi) := 1

4: for k := 0, . . . ,∞ do
5: Pick i at random in {1, . . . , n}
6: Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) // FW corner

7: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

8: Solve yai := argmin
y∈S(k)

i

Hi(y;w(k)) // away corner

9: Let wa := 1
λnψi(y

a
i ) and `a := 1

nLi(y
a
i )

10: Let wd := ws −wa and `d = `s − `a
11: Let γ := −λwd

Tw(k)+`d
λ‖wd‖2 and clip to [0, α

(k)
i (yai )]

12: Update wi(k+1) := wi
(k) + γwd

13: and `i
(k+1) := `i

(k) + γ `d
14: Update w(k+1) := w(k) +wi

(k+1) −wi(k)

15: and `(k+1) := `(k) + `i
(k+1) − `i(k)

16: Update Si(k+1) := Si(k) ∪ {y∗i }
17: and α

(k+1)
i (yai ) := α

(k)
i (yai )− γ

18: and α
(k+1)
i (y∗i ) := α

(k)
i (y∗i ) + γ

19: if γ = α
(k)
i (yai ) then

20: Set Si(k+1) := Si(k+1) \ {yai } // drop step
21: end if
22: end for

E. Proof of Theorem 2 (convergence of BCFW
with gap sampling)

Lemma 4 (Expected block descent lemma). Let gj(α(k))

be the block gap for block j for the iterateα(k). Letα(k+1)

be obtained by sampling a block i with probability pi and
then doing a (block) FW step with line-search on this block,
starting from α(k). Consider any set of scalars γj ∈ [0, 1],
j = 1, . . . , n, which do not depend on the chosen block i.
Then in conditional expectation over the random choice of
block i with probabilities pi, it holds:

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))−

n∑
i=1

γipigi(α
(k))

+ 1
2

n∑
i=1

γ2
i piC

(i)
f . (20)

Proof. The proof is analogous to the proof of Lemma 3, but
being careful with the expectation. Let block i be the cho-
sen one that defined α(k+1) and let αγ := α + γ(s[i] −
α[i]), where s(i) ∈ M(i) is the FW corner on block i
and s[i] ∈ Rm is its zero-padded version. By the line-
search, we have f(α(k+1)) ≤ f(αγ) for any γ ∈ [0, 1].
By using γ = γi in the bound (13) provided in the curva-
ture Definition 2, and by the definition of the Frank-Wolfe

Algorithm 4 Block-coordinate away-step Frank-Wolfe
(BCAFW) algorithm for structured SVM

1: Let w(0) := wi
(0) := 0; `(0) := `i

(0) := 0;
2: S(0)

i := {yi}; // active sets
3: α(0)

i (y) := 0, y 6= yi; α
(0)
i (yi) := 1

4: for k := 0, . . . ,∞ do
5: Pick i at random in {1, . . . , n}
6: Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) // FW corner

7: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

8: Solve yai := argmin
y∈S(k)

i

Hi(y;w(k)) // away corner

9: Let wa := 1
λnψi(y

a
i ) and `a := 1

nLi(y
a
i )

10: Let gFWi := λ(w
(k)
i −ws)Tw(k) − `(k)

i + `s

11: Let gAi := λ(wa −w(k)
i )Tw(k) + `

(k)
i − `a

12: if gFWi > gAi then // FW step

13: Let γ :=
gFW
i

λ‖w(k)
i −ws‖2

and clip to [0, 1]

14: Update Si(k+1) := Si(k) ∪ {y∗i }
15: and α

(k+1)
i (y) := (1− γ)α(k)

i (y)

16: and α
(k+1)
i (y∗i ) := α

(k+1)
i (y∗i ) + γ

17: Set Si(k+1) := {y∗i } if γ = 1
18: else // away step
19: Let γ :=

gAi
λ‖w(k)

i −wa‖2
and clip to [0,

αi(y
a
i )

1−αi(ya
i ) ]

20: Update α
(k+1)
i (y) := (1 + γ)α

(k)
i (y)

21: and α
(k+1)
i (yai ) := α

(k+1)
i (yai )− γ

22: and Si(k+1) := Si(k) \ {yai } if α(k+1)
i (yai ) = 0

23: end if
24: Update wi(k+1) := wi

(k) + γwd
25: and `i

(k+1) := `i
(k) + γ `d

26: Update w(k+1) := w(k) +wi
(k+1) −wi(k)

27: and `(k+1) := `(k) + `i
(k+1) − `i(k)

28: end for

gap, we get:

f(α(k+1)) ≤ f(αγi) = f(α(k) + γi(s[i] −α
(k)
[i] ))

≤ f(α(k)) + γigi(α
(k)) +

γ2
i

2 C
(i)
f .

Taking the expectation of the bound with respect to i, con-
ditioned on α(k), proves the lemma.

Definition 5. The nonuniformity measure χ(x) of a vec-
tor x ∈ Rn+ is defined as:

χ(x) :=
√

1 + n2 Var
[
p
]

where p := x
‖x‖1 is the probability vector obtained by nor-

malizing x.
Lemma 6. Let x ∈ Rn+. The following relation between
its `1-norm and `2-norm holds:

‖x‖2 = χ(x)√
n
‖x‖1 .
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Proof. We have that

Var
[
p
]

= IE
[
p2
]
− IE

[
p
]2

= 1
n‖p‖

2
2 − 1

n2 . (21)

Combining (21) and Definition 5 we prove the lemma.

Remark. For any x ∈ Rn+, the quantity χ(x) always be-
longs to the segment [1,

√
n]. We have χ(x) = 1 when all

the elements of x are equal and χ(x) =
√
n when all the

elements, except one, equal zero.

Theorem 2. Assume that at each iterate α(k), k ≥ 0,
BCFW with gap sampling (Algorithm 2) has access to the
exact values of the block gaps. Then, at each iteration, it
holds that IE

[
f(α(k))

]
− f(α∗) ≤ 2n

k+2n

(
C⊗f χ

⊗ + h0

)
where α∗ ∈ M is a solution of problem (3), h0 :=
f(α(0)) − f(α∗) is the suboptimality at the starting point
of the algorithm, the constant C⊗f :=

∑n
i=1 C

(i)
f is the sum

of the curvature constants, and the constant χ⊗ is an up-

per bound on IE
[

χ(C
(:)
f )

χ(g:(α(k)))3

]
, which quantities the amount

of non-uniformity of the C(i)
f ’s in relationship to the non-

uniformity of the gaps obtained during the algorithm. The
expectations are taken over the random choice of the sam-
pled block at iterations 1, . . . , k of the algorithm.

Proof. Starting from Lemma 4 with γi := γ for some γ
to be determined later and pi := gi

g where gi := gi(α
(k))

and g := g(α(k)), we get

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− γ

n∑
i=1

g2i
g

+ γ2

2

n∑
i=1

C
(i)
f

gi
g . (22)

The Cauchy-Schwarz inequality bounds the dot product
between the vectors of curvature constants c := C

(:)
f :=

(C
(i)
f )ni=1 and block gaps g := g:(α

(k)) := (gi)
n
i=1

n∑
i=1

C
(i)
f gi ≤ ‖c‖2 ‖g‖2 . (23)

Combining (23) and the result of Lemma 6 for the vectors
of curvature constants and block gaps (with ‖g‖1 = g and
‖c‖1 = C⊗f ), we can further bound (22):

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− γg

n χ(g)2

+ γ2

2nχ(g)χ(c)C⊗f . (24)

Subtracting the minimal function value f(α∗) from both
sides of (24) and by using h(α(k)) := f(α(k))− f(α∗) ≤
g, we bound the conditional expectation of the suboptimal-
ity h with

IE[h(α(k+1)) | α(k)] ≤ h(α(k))− γ
nχ(g)2 h(α(k))

+ γ2

2nχ(g)χ(c)C⊗f (25)

which is analogous to (Lacoste-Julien et al., 2013,
Eq. (20)). In what follows, we use the modified induction
technique of (Lacoste-Julien et al., 2013, Proof of Theo-
rem C.1).

By induction, we are going to prove the following upper
bound on the unconditional expectation of the suboptimal-
ity h:

IE
[
h(α(k))

]
≤ 2nC

k+2n , for k ≥ 0, (26)

that corresponds to the statement of the theorem with C :=
C⊗f χ

⊗ + h0.

The basis of the induction k = 0 follows immediately from
the definition of C, given that C⊗f ≥ 0 and χ⊗ > 0.

Consider the induction step. Assume that (26) is sat-
isfied for k ≥ 0. With a particular choice of step
size γ := 2n

χ(g)2(k+2n) ∈ [0, 1] (which does not depend on
the picked i), we rewrite the bound (25) on the conditional
expectation as

IE[h(α(k+1)) | α(k)] ≤
(

1− 2
k+2n

)
h(α(k))

+ 2n
(k+2n)2

χ(c)C⊗f
χ(g)3 . (27)

Taking the unconditional expectation of (27), then the
induction assumption (26) and the definition of χ⊗ give us
the deterministic inequality

IE[h(α(k+1))] ≤
(

1− 2
k+2n

)
2nC
k+2n

+ 2n
(k+2n)2χ

⊗ C⊗f . (28)

Bounding χ⊗ C⊗f by C and rearranging the terms gives

IE[h(α(k+1))] ≤ 2nC
k+2n

(
1− 2

k+2n + 1
k+2n

)
= 2nC
k+2n

k+2n−1
k+2n

≤ 2nC
k+2n

k+2n
k+2n+1

= 2nC
(k+1)+2n ,

which completes the induction proof.

Comparison with uniform sampling. We now compare
the rates obtained by Theorem 2 for BCFW with gap sam-
pling and by Theorem 1 for BCFW with uniform sam-
pling. The only difference is in the constants: Theorem 2
has C⊗f χ

⊗ and Theorem 1 has C⊗f .

Recall that by definition

χ⊗ = max
k

IE
[

χ(C
(:)
f )

χ(g:(α(k)))3

]
In the best case for gap sampling, the curvature constants
are uniform, χ(C

(:)
f ) = 1, and the gaps are nonuni-

form χ(g:(α
(k))) ≈

√
n. Thus, χ⊗ ≈ 1

n
√
n

.

In the worst case for gap sampling, the curvature constants
are very non-uniform, χ(C

(:)
f ) ≈

√
n. The constant for gap
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sampling is still better if the gaps are non-uniform enough,

i.e., χ(g:(α
(k))) ≥ n

1
6 .

We note that to design a sampling scheme that always dom-
inates uniform sampling (in terms of bounds at least), we
would need to include the C(i)

f ’s in the sampling scheme
(as was essentially done by Csiba et al. (2015) for SDCA).
Unfortunately, computing good estimates for C(i)

f ’s is too
expensive for structured SVM, thus motivating our simpler
yet practically efficient scheme. See also the discussion af-
ter (10).

F. Proof of Theorem 3 (convergence of BCFW
with caching)

Theorem 3. Let ν̃ := 1
nν ≤ 1. Then, for each k ≥ 0, the

iterateα(k) of Algorithm 5 satisfies IE
[
f(α(k))

]
−f(α∗) ≤

2n
ν̃k+2n

(
1
ν̃C
⊗
f + h0

)
where α∗ ∈ M is a solution of prob-

lem (3), h0 := f(α(0))− f(α∗) is the suboptimality at the
starting point of the algorithm, C⊗f :=

∑n
i=1 C

(i)
f is the

sum of the curvature constants (see Definition 2) of f with
respect to the domainsM(i) of individual blocks. The ex-
pectation is taken over the random choice of the sampled
blocks at iterations 1, . . . , k of the algorithm.

Proof. The key observation of the proof consists in the fact
that the combined oracle (the cache oracle in the case of a
cache hit and the max oracle in the case of a cache miss)
closely resembles an oracle with multiplicative approxi-
mation error (Lacoste-Julien et al., 2013, Eq. (12) of Ap-
pendix C).

In the case of a cache hit, Definition 2 of curvature constant
for any step size γ ∈ [0, 1] gives us

f(α(k+1)
γ ) := f(α(k) + γ(c[i] −α

(k)
[i] ))

≤ f(α(k)) + γ〈c(i)−α
(k)
(i) ,∇(i)f(α(k))〉+ γ2

2 C
(i)
f

= f(α(k))− γĝ(k)
i + γ2

2 C
(i)
f

≤ f(α(k))− γν̃g(k0) + γ2

2 C
(i)
f

where the corner c(i) ∈ M(i) and its zero-padded ver-
sion c[i] ∈ Rm are provided by the cache oracle, and
ν̃ = 1

nν is the constant controlling the global part of the
cache-hit criterion. In the case of a cache miss, similarly to
Lemma 3, we get

f(α(k+1)
γ ) ≤ f(α(k))− γg(k)

i + γ2

2 C
(i)
f .

Combining the two cases we get

f(α(k+1)
γ ) ≤ f(α(k))− γg̃(k)

i + γ2

2 C
(i)
f (29)

where

g̃
(k)
i := [i is a cache miss]g(k)

i + [i is a cache hit]ν̃g(k0).

Algorithm 5 Block-coordinate Frank-Wolfe (BCFW) al-
gorithm with cache for structured SVM

1: Let w(0) :=wi
(0) :=0; `(0) :=`i

(0) :=0; Ci :={yi};
2: g(0) :=g

(0)
i =+∞

3: k0 :=ki :=0 ; // the last time g / gi was computed
4: for k := 0, . . . ,∞ do
5: Pick i at random in {1, . . . , n} // either uniform or
6: with probability ∝ g(ki)

i for gap sampling
7: Solve yci := argmaxy∈Ci Hi(y;w) // cache corner

8: Let wc :=
ψi(y

c
i )

λn and `c := 1
nLi(y

c
i )

9: Let ĝ(k)
i := λ(w

(k)
i −wc)Tw(k) − `i(k) + `c

10: if ĝ(k)
i ≥ max(Fg

(ki)
i , νng

(k0)) then // cache hit
11: ws := wc, `s := `c, ĝi := ĝ

(k)
i

12: else // cache miss
13: Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) // FW corner

14: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

15: Let g(k)
i := λ(w

(k)
i −ws)Tw(k) − `(k)

i + `s

16: Set ki := k, ĝi := g
(k)
i

17: Update Ci := Ci ∪ {y∗i }
18: end if
19: Let γ := ĝi

λ‖w(k)
i −ws‖2

and clip to [0, 1]

20: Update wi(k+1) := (1− γ)wi
(k) + γws

21: and `i
(k+1) := (1− γ)`i(k) + γ `s

22: Update w(k+1) := w(k) +wi
(k+1) −wi(k)

23: and `(k+1) := `(k) + `i
(k+1) − `i(k)

24: if update global gap then
25: Let g(k0) := 0, k0 := k + 1
26: for i := 1, . . . , n do
27: Solve y∗i := argmax

y∈Yi

Hi(y;w(k0))

28: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

29: g(k0)+= λ(w
(k0)
i −ws)Tw(k0) − `(k0)

i + `s
30: Set ki := k0

31: end for
32: end if
33: end for

Subtracting f(α∗) from both sides of (29) and taking the
expectation of (29) w.r.t. the block index i we get

IE
[
h(α(k+1)

γ ) |α(k)
]
≤ h(α(k))− γ

n g̃
(k) + γ2

2nC
⊗
f (30)

where h(α) := f(α) − f(α∗) is the suboptimality of the
function f and g̃(k) :=

∑n
i=1 g̃

(k)
i . We know that the dual-

ity gap upper-bounds the suboptimality, i.e., g(α) ≥ h(α),
and that cache miss steps, as well as cache hit steps, always
decrease suboptimality, i.e., h(α(k)) ≤ h(α(k0)).

If at iteration k there is at least one cache hit, then we can
bound the quantity g̃(k) from below:

g̃(k) ≥ ν̃g(α(k0)) ≥ ν̃h(α(k0)) ≥ ν̃h(α(k)). (31)
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Algorithm 6 INIT-REG-PATH: Initialization of the regular-
ization path for structured SVM

input κ, tolerance ε
1: w := wi := 0; ` := `i := 0; ψ̃ := 0
2: for i := 1, . . . , n do
3: ỹi := argmaxy∈Yi

Hi(y;0)

4: `i := 1
nL(yi, ỹi)

5: ` := `+ `i
6: ψ̃ := ψ̃ + 1

nψ(ỹi)
7: end for
8: for i := 1, . . . , n do
9: θi := maxy∈Yi

(
− ψ̃Tψ(y)

)
10: end for
11: Let λ∞ := 1

κε

(
‖ψ̃‖2 + 1

n

∑n
i=1 θi

)
12: Let w := 1

λ∞ ψ̃; wi := 1
nλ∞ψ(ỹi)

13: for i := 1, . . . , n do gi := 1
nλ∞ θi + λ∞wT

i w
14: for i := 1, . . . , n do // optional
15: Si := {ỹi}
16: αi(ỹi) := 1 and αi(y) := 0 for y 6= ỹi
17: end for
18: return w, wi, `, `i, gi, λ∞, Si, α

In the case of no cache hits, we have

g̃(k) = g(α(k)) ≥ h(α(k)) ≥ ν̃h(α(k))

where the last inequality holds because ν̃ ≤ 1. Applying
the lower bound on g̃(k) to (30), we get

IE
[
h(α(k+1)

γ ) |α(k)
]
≤ h(α(k))− γν̃

n h(α(k))

+ γ2

2nC
⊗
f .

(32)

Inequality (32) is identical to the inequality (Lacoste-Julien
et al., 2013, Eq. (20)) in the proof of convergence of BCFW
with a multiplicative approximation error in the oracle. We
recopy their argument below for reference to finish the
proof. First, we take the expectation of (32) w.r.t. the choice
of previous blocks:

IE
[
h(α(k+1)

γ )] ≤ (1− γν̃
n )IE

[
h(α(k))] + γ2

2nC
⊗
f . (33)

Following the proof of Theorem C.1 in Lacoste-Julien et al.
(2013), we prove the bound of Theorem 3 by induction.
The induction hypothesis consists in inequality

IE
[
h(α(k))] ≤ 2nC

ν̃k+2n for k ≥ 0

where C :=
(

1
ν̃C
⊗
f + h0

)
.

The base-case k = 0 follows directly from C ≥ h0. We
now prove the induction step. Assume that the hypothesis
is true for a given k ≥ 0. Let us now prove that the hypoth-
esis is true for k + 1. We use inequality (32) with the step

Algorithm 7 Regularization path for structured SVM

input κ, tolerance ε, λmin
1: Initialize regularization path using Algorithm 6.
{w0,w0

i , `
0, `0i , g

0
i , λ

0,S0
i ,α

0}:= INIT-REG-PATH (κ, ε)
2: J := 0
3: repeat
4: For i := 1, . . . , n do δi := `Ji − λJ〈wJ ,wJ

i 〉
5: Compute excess gap τ := ε−

∑n
i=1 g

J
i

6: Let ∆ :=
∑n
i δi

7: if ∆ ≤ τ then
8: Let ρ := 1− τ

∆
9: else

10: wJ is ε-approximate for any λ < λJ

11: return {λj}Jj=0, {wj}Jj=0

12: end if
13: Let λJ+1 := ρλJ , `J+1 := ρ`J ,
14: for i := 1, . . . , n do // update gaps using (11)
15: Let gJ+1

i := gJi + (1− ρ)δi and `J+1
i := ρ`Ji

16: end for
17: for i := 1, . . . , n do // optional: update duals
18: SJ+1

i := SJi ∪ {yi}
19: αJ+1

i (y) := ραJi (y) for y ∈ SJ+1
i \ {yi}

20: αJ+1
i (yi) := 1−

∑
y∈SJ+1

i \{yi} α
J+1
i (y)

21: end for
22: Run SSVM-optimizer with tolerance κ ε
23: to updatewJ+1,wJ+1

i , `J+1, `J+1
i , gJ+1

i , SJ+1
i , αJ+1

// to have ε-appr. path, gaps gJ+1
i have to be exact

24: J := J + 1
25: until λJ+1 < λmin
26: return {λj}Jj=0, {wj}Jj=0

size γk := 2n
ν̃k+2n ∈ [0, 1]:

IE
[
h(α(k+1)

γk
)] ≤ (1− γkν̃

n )IE
[
h(α(k))] + (γk)2Cν̃

2n

= (1− 2ν̃
ν̃k+2n )IE

[
h(α(k))] + ( 2n

ν̃k+2n )2Cν̃
2n

≤ (1− 2ν̃
ν̃k+2n ) 2nC

ν̃k+2n + ( 1
ν̃k+2n )22nCν̃

where, in the first line, we use inequality C⊗f ≤ Cν̃,
and, in the last line, we use the induction hypothesis for
IE
[
h(α(k))].

By rearranging the terms, we have

IE
[
h(α(k+1))] ≤ 2nC

ν̃k+2n

(
1− 2ν̃

ν̃k+2n + ν̃
ν̃k+2n

)
= 2nC
ν̃k+2n

ν̃k+2n−ν̃
ν̃k+2n

≤ 2nC
ν̃k+2n

ν̃k+2n
ν̃k+2n+ν̃

= 2nC
ν̃(k+1)+2n ,

which finishes the proof.



Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

G. Convergence of BCPFW and BCAFW
In this section, we prove Theorem 4 that states that the sub-
optimality error on (3) decreases geometrically in expecta-
tion for BCPFW and BCAFW for the iterates at which no
block would have a drop step, i.e., when no atom would be
removed from the active sets. We follow closely the no-
tation and the results from Lacoste-Julien & Jaggi (2015)
where the global linear convergence of the (batch) pair-
wise FW (PFW) and away-step FW (AFW) algorithms was
shown. The main insight to get our result is that the “pair-
wise FW gap” decomposes also as a sum of block gaps.
We give our result for the following more general setting
(the block-separable analog of the setup in Appendix F
of Lacoste-Julien & Jaggi (2015)):

min
α∈M

f(α) with f(α) := q(Aα) + b>α

and M =M(1) × · · · ×M(n),
(34)

where q is a strongly convex function, and M(i) :=
conv(A(i)) for each i, where A(i) ⊆ Rmi is a finite set
of vectors (called atoms). In other words, each M(i) is a
polytope. For the example of the dual SSVM objective (3),
q(·) := λ

2 ‖ · ‖
2 and A(i) are the corners of a probability

simplex in mi := |Yi| dimensions.

Suppose that we maintain an active set Si for each block (as
in the BCPFW algorithm). We first relate the batch PFW
direction with the block PFW directions, as well as their
respective batch and blockwise PFW gaps (the PFW gap is
replacing the FW gap (5) in the analysis of PFW).
Definition 7 (Block PFW gaps). Consider the problem (34)
and suppose that the pointα has each of its blockα(i) with
current active set Si ⊆ A(i).10 We define the corresponding
batch PFW gap at α with active set S := S1×· · ·×Sn as:

gPFW(α;S) := max
s∈M,v∈S

〈−∇f(α) , s− v〉 (35)

= max
s∈M,v∈S

∑
i

〈−∇(i)f(α) , s(i) − v(i)〉

=
∑
i

max
s(i)∈M(i)

v(i)∈Si

〈−∇(i)f(α) , s(i) − v(i)〉

︸ ︷︷ ︸
=:

∑
i

gPFW
i (α ; Si), (36)

where gPFW
i is the PFW gap for block i. We recognize that

the maximizing arguments for gPFW
i are the FW corner s(i)

and the away corner v(i) for block i that one would obtain
when running BCPFW on this block.

We note that by maintaining independent active sets Si for
each block, the number of potential away corner combi-
nations is exponential in the number of blocks, yielding

10That is, α(i) is a convex combination of all the elements of
S(i) with non-zero coefficients.

many more possible directions of movement than in the
batch PFW algorithm where the number of away corners
is bounded by the number of iterations. Moreover, sup-
pose that we have an explicit expansion for each block
α(i) as a convex combination of atoms in the active set:
α(i) =

∑
v(i)∈Si βi(v(i))v(i), where βi(v(i)) > 0 is the

convex combination coefficient associated with atom v(i).
Then we can also express α as an explicit convex com-
bination of the (exponential size) active set S as follows:
α =

∑
v∈S β(v)v, where β(v) :=

∏n
i=1 βi(v(i)).

We can now prove an analog of the expected block descent
lemma (Lemma 4 for BCFW) in the case of BCPFW and
BCAFW. For technical reasons, we need a slightly differ-
ent block curvature constantCA (i)

f (cf. Eq. (26) in Lacoste-
Julien & Jaggi (2015)).

Lemma 8 (Expected BCPFW descent lemma). Consider
running the BCPFW algorithm on problem (34). Let α(k)

be the current iterate, and suppose that Sj is the current
active set for each blockα(k)

(j) . Let S(k) := S1×· · ·×Sn be

the current (implicit) active set forα(k). Suppose that there
is no drop set at α(k), that is, that for each possible block i
that could be picked at this stage, the PFW step with line-
search on block i will not have its step size truncated (we
say that the line-search will succeed). Then, conditioned
on the current state, in expectation over the random choice
of block i with uniform probability and for any γ ∈ [0, 1],
it holds for the next iterate α(k+1) of BCPFW:

IE
[
f(α(k+1)) |α(k),S(k)

]
≤

f(α(k))− γ
ng

PFW(α(k) ; S(k)) + γ2

2nC
A⊗
f , (37)

where CA⊗
f :=

∑n
i=1 C

A (i)
f is the total (away) curvature

constant, and where CA (i)
f is defined as in Definition 2, but

allowing the reference point α(i) in (13) to be any point
v(i) ∈ M(i) instead, thus allowing a pairwise FW direc-
tion s[i] − v[i] to be used in its definition.

Moreover, (37) also holds for BCAFW (again under the as-
sumption of no drop step), but with an extra 1/2 factor in
front of gPFW(α(k) ; S(k)) in the bound.

Proof. Let block i be the chosen one that defined α(k+1)

and let αγ := α(k) + γ(s[i] − v[i]), where s(i) ∈ M(i) is
the FW corner on block i with s[i] ∈ Rm its zero-padded
version, and similarly v(i) ∈ Si is the chosen away cor-
ner on block i. By assumption, we have that the line-
search succeeds, i.e., the minimum of minγ∈[0,γmax] f(αγ)
is achieved for γ∗ < γmax, where γmax is the maximum
step size for this block for the PFW direction (this is be-
cause the optimal step size for the line-search cannot be
truncated at γmax, as otherwise it would be a drop step).
As f is a convex function, this means that f(α(k+1)) =
minγ∈[0,γmax] f(αγ) = minγ≥0 f(αγ) (removing inactive
constraints does not change its minimum). By definition
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of CA (i)
f , we thus have for any γ ∈ [0, 1]:

f(α(k+1)) ≤ f(αγ)

= f(α(k) + γ(s[i] − v[i]))

≤ f(α(k))+γ〈∇(i)f(α), s(i)−v(i)〉+ γ2

2 C
A (i)
f

= f(α(k))− γ gPFW
i (α(k);Si) + γ2

2 C
A (i)
f . (38)

Taking the expectation of the bound with respect to i,
conditioned on α(k) and S(k), yields (37) by using
the block-decomposition relationship (36) in the defini-
tion of gPFW(α(k) ; S(k)). This completes the proof for
BCPFW.

In the case of BCAFW, let di be the chosen direction
for block i (either a FW direction or an away direction).
Then since di is chosen to maximize the inner prod-
uct with −∇(i)f(α(k)), we have 〈−∇(i)f(α(k)),di〉 ≥
1
2g

PFW
i (α(k) ; Si) (with a similar argument as used to get

Eq. (6) in Lacoste-Julien & Jaggi (2015) for AFW). We
then follow the same argument to derive (38), but us-
ing di instead of (s(i)− v(i)), which gives an extra 1/2

factor as 〈−∇(i)f(α(k)),di〉 is potentially only half of
gPFW
i (α(k) ; Si). Taking again the expectation of (38) com-

pletes the proof.

Remark 9. The important condition that there is no drop
step at α(k) in the BCPFW descent lemma 8 is to allow the
bound (38) to hold for any γ ∈ [0, 1]. Otherwise, let I be
the (non-empty) set of blocks for which there would be a
drop step at α(k) and let γI := mini∈I γ

(i)
max, where γ(i)

max
is the maximum step size for block i. Then in this case
we could only show the bound (38) for γ ≤ γI . But γI
could be arbitrarily small,11 and so no significant progress
is guaranteed in expectation in this case.

We also note that CA (i)
f is used instead of C(i)

f in the

lemma because C(i)
f can only be used with a feasible step

from α(k), and thus again, the bound would only be valid
for γ ≤ γmax (as bigger step sizes can take you outside of
M(i)). If the gradient of f is Lipschitz continuous, one can
bound CA (i)

f ≤ L̃i
(

diam‖·‖iM(i)
)2

, which is almost the

same bound as for C(i)
f explained in footnote 6, but with L̃i

being the Lipschitz constant of ∇(i)f for variations in the
slightly extended domainM(i) + (M(i)−M(i)) (with set
addition in the Minkowski sense).

Theorem 4 (Geometric convergence of BCPFW). Con-
sider running BCPFW (or BCAFW) on problem (34) where
q is a strongly convex function andM is a block-separable
polytope. Let hk := f(α(k))− f(α∗) be the suboptimality
of the iterate k, where α∗ is any optimal solution to (34).

11Small maximum step sizes happen when the current coordi-
nate value for an away corner is small (perhaps because a small
step size was used by the line-search when they were added as a
FW corner previously).

Conditioned on any iterate α(k) with active set S(k) such
that no block could give a drop set (as defined in the con-
ditions for Lemma 8), then the expected new suboptimality
decreases geometrically, that is:

IE
[
hk+1 |α(k),S(k)

]
≤ (1− ρ)hk, (39)

with rate:

ρ := 1
2n min{1, 2 µ̃f

CA⊗
f

} for the BCPFW algorithm, (40)

ρ := 1
4n min{1, µ̃f

CA⊗
f

} for the BCAFW algorithm, (41)

where CA⊗
f :=

∑n
i=1 C

A (i)
f is the total (away) curvature

constant for problem (34) as defined in Lemma 8, and µ̃f is
the generalized strong convexity constant for problem (34)
as defined in Eq. (39) of Lacoste-Julien & Jaggi (2015) (µ̃f
is strictly greater than zero when q is strongly convex and
M is a polytope).

Proof. We first do the argument for BCPFW. Let gk :=
gPFW(α(k) ; S(k)), and notice that gk ≥ hk always. Be-
cause we assume that there is no drop step at α(k), we can
use the expected BCPFW descent lemma 8. By subtracting
f(α∗) on both side of the descent inequality (37), we get
(for any γ ∈ [0, 1]):

IE
[
hk+1 |α(k),S(k)

]
≤ hk − γ

ngk + γ2

2nC
A⊗
f . (42)

We can minimize the RHS of (42) with γ∗ = gk

CA⊗
f

. If

gk > CA⊗
f (i.e. γ∗ > 1), then use γ = 1 in (42) to get:

IE
[
hk+1 |α(k),S(k)

]
≤ hk − 1

2ngk ≤ (1− 1
2n )hk. (43)

This gives a geometric rate of ρ = 1
2n . So now suppose

that gk ≤ CA⊗
f (so that γ∗ ≤ 1); putting γ = γ∗ in (42),

we get:

IE
[
hk+1 |α(k),S(k)

]
≤ hk − 1

2nCA⊗
f

gk
2. (44)

We now use the key relationship between the suboptimal-
ity hk and the PFW gap gk derived in inequality (43)
of Lacoste-Julien & Jaggi (2015) (which is true for any
function f by definition of µ̃f if we allow it to be zero):

hk ≤ gk
2

2µ̃f
. (45)

Substituting (45) into (44), we get:

IE
[
hk+1 |α(k),S(k)

]
≤ (1− µ̃f

nCA⊗
f

)hk, (46)

which gives the ρ = µ̃f/nCA⊗
f rate. Taking the worst rate

of (43) and (46) gives the rate (40), completing the proof
for BCPFW.
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In the case of BCAFW, Lemma 8 yields the inequality (42)
but with an extra 1/2 factor in front of gk. Re-using the
same argument as above, we get a rate of ρ = 1/4n when
γ∗ > 1, and ρ = µ̃f/4nCA⊗

f when γ∗ ≤ 1, showing (41) as
required.

Finally, the fact that µ̃f > 0 when q is µ-strongly convex
and M is a polytope comes from the lower bound given
in Theorem 10 of Lacoste-Julien & Jaggi (2015) in terms
of the pyramidal width ofM (a strictly positive geometric
quantity for polytopes), and the generalized strong convex-
ity of f as defined in Lemma 9 of Lacoste-Julien & Jaggi
(2015). The generalized strong convexity of f is simply µ
if f is µ-strongly convex. In the more general case of prob-
lem (34) where only q is µ-strongly convex, the generalized
strong convexity depends both on µ and the Hoffman con-
stant (Hoffman, 1952) associated with the linear system of
problem (34). See Lacoste-Julien & Jaggi (2015) for more
details, as well as Lemma 2.2 of Beck & Shtern (2015).

Interpretation. Theorem 4 only guarantees progress of
BCPFW or BCAFW when there would not be any drop step
for any block i for the current iterate. For the batch AFW
algorithm, one can easily lower bound the number of times
that these “good steps” can happen as a drop step reduces
the size of the active set and thus cannot happen more than
half of the time. On the other hand, in the block coordinate
setting, we can be unlucky and always have one block that
could give a drop step (while we pick other blocks during
the algorithm, this bad block affects the expectation). This
means that without a refined analysis of the drop step pos-
sibility, we cannot guarantee any progress in the worst case
for BCPFW or BCAFW. As a safeguard, one can modify
BCPFW or BCAFW so that it also has the option to do a
standard BCFW step on a block if it yields better progress
on f – this way, the algorithm inherits at least the (sublin-
ear) convergence guarantees of BCFW.

Empirical linear convergence. In our experiments, we
note that BCPFW always converged empirically, and had
an empirical linear convergence rate for the SSVM objec-
tive when λ was big enough (q(·) = λ

2 ‖ · ‖
2 for the SSVM

objective (3)). See Figure 5 for OCR-large (c) for exam-
ple. We also tried the modified BCPFW algorithm where a
choice is made between a FW step, a pairwise FW step or
an away step on a block by picking the one which gives the
biggest progress. We did not notice any significant speed-
up for this modified method.

On the dimension of SSVM. Finally, we note that the
rate constant ρ in Theorem 4 has an implicit dependence
on the dimensionality (in particular, through the pyramidal
width ofM). Lacoste-Julien & Jaggi (2015) showed that
the largest possible pyramidal width of a polytope in di-
mension m (for a fixed diameter) is achieved by the prob-
ability simplex and is Θ(1/

√
m). For the SSVM in the

general form (3), the dimensionality ofM(i) is the number

of possible structured outputs for input i, which is typi-
cally an exponentially large number, and thus the pyrami-
dal width lower bound would be useless in this case. Fortu-
nately, the matrix A (feature map) and vector b (loss func-
tion) are highly structured, and thus many α’s are mapped
to the same objective value. For a feature mapping ψi(y)
representing the sufficient statistics for an energy function
associated with a graphical model (as for a conditional ran-
dom field (Lafferty et al., 2001)), then the SSVM objec-
tive is implicitly optimizing over the marginal polytope for
the graphical model (Wainwright & Jordan, 2008). More
specifically, let Ai be the d × mi submatrix of A associ-
ated with example i. Then we can write Ai = BiMi where
Mi is a p ×mi marginalization matrix, that is, µ = Miα
is an element of the marginal polytope for the graphical
model, where p is the dimensionality of the marginal poly-
tope – which is a polynomial number in the size of the
graph, rather than exponential. By the affine invariance
property of the FW-type algorithms, we can thus instead
use the pyramidal width of the marginal polytope for the
convergence analysis (and similarly for the Hoffman con-
stant). Lacoste-Julien & Jaggi (2015) conjectured that the
pyramidal width of a marginal polytope in dimension pwas
also Θ(1/

√
p), thus giving a more reasonable bound for the

convergence rate of BCPFW for SSVM.

H. BCFW for SSVM with box constraints
H.1. Problem with box constraints
Problem (1) can be equivalently rewritten as a quadratic
program (QP) with an exponential number of constraints:

min
w, ξ

λ
2 ‖w‖

2
+ 1

n

n∑
i=1

ξi (47)

s.t. 〈w,ψi(y)〉 ≥ L(yi,y)− ξi ∀i, ∀y ∈ Yi
where the slack variable ξi measures the surrogate loss for
the i-th datapoint. Problem (47) is often referred to as the
n-slack structured SVM with margin-rescaling (Joachims
et al., 2009, Optimization Problem 2).

In this section, we consider the problem (47) with addi-
tional box constraints on the parameter vector w:

min
w, ξ

λ
2 ‖w‖

2
+ 1

n

n∑
i=1

ξi (48)

s.t. 〈w,ψi(y)〉 ≥ L(yi,y)− ξi ∀i, ∀y ∈ Yi,
l 4 w 4 u,

where l ∈ Rd and u ∈ Rd denote the lower and upper
bounds, respectively, and the symbol “4” is the element-
wise “less or equal to” sign. In the following, we assume
that the box constraints are feasible, i.e., l 4 u. Note
that the following discussion can be directly extended to
the case where only some dimension of the weight vec-
tor have to respect the box constraints. The Lagrangian of
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problem (48) can be written as

L(w, ξ,α,βl,βu) = λ
2 〈w,w〉+ 1

n

n∑
i=1

ξi

+
∑

i∈[n],y∈Yi

1
nαi(y) (−ξi + 〈w,−ψi(y)〉+ Li(y))

+ λ〈βu,w − u〉+ λ〈βl,−w + l〉 (49)

where βl ∈ Rd and βu ∈ Rd are the dual variables asso-
ciated with the lower and upper bound constraints, respec-
tively. From the KKT conditions, we obtain

w = Aα− (βu − βl), (50)∑
y∈Yi

αi(y) = 1 ∀i ∈ [n]. (51)

Finally, the dual of problem (48) (here written in a mini-
mization form) can be written as follows:

min
α∈Rm

α<0

f(α,βl,βu) := λ
2

∥∥Aα− (βu − βl)
∥∥2 − bTα

+ λ(βT
uu− βT

l l)

s.t.
∑
y∈Y

αi(y) = 1 ∀i ∈ [n],

and βu < 0,βl < 0. (52)

A modified block optimization method. Ideally, we
should optimize f(α,βl,βu) jointly w.r.t. all the dual vari-
ables. This task is not directly suitable for the Frank-Wolfe
approach as the domain for βl and βu is unbounded. How-
ever, joint optimization w.r.t. βl and βu with α kept fixed
can be done in closed form. After that, optimization w.r.t.α
can be performed using the Frank-Wolfe blockwise ap-
proach. Therefore, we resort to optimizing in a blockwise
fashion: we iterate either a batch FW or a BCFW step on
α with an exact block-update on (βu,βl). As we will see
below, this principled approach is similar to a commonly
used heuristic of truncating the value of w to make it fea-
sible during an algorithm which works on the dual. In fact,
our approach will be equivalent to run FW or BCFW with
a truncation makingw(α) feasible after each FW step, but
with a change in the optimal step-size computation (line 8
in Algorithm 8 for FW; line 7 in Algorithm 9 for BCFW)
due to the different nature of the optimization problem.

H.2. Optimizing w.r.t βu and βl while fixing α
The optimization w.r.t.βu withα andβl fixed can be easily
solved in closed form via a simple thresholding operation:

β∗u = [Aα+ βl − u]+ . (53)

The optimization w.r.t. βl with α and βu fixed is analo-
gous:

β∗l = [−Aα+ βu + l]+ . (54)

Algorithm 8 Batch Frank-Wolfe algorithm for structured
SVM with box constraints

1: Let v(0) := 0; `(0) := 0
2: w(0) := [v(0)]ul // truncation to the feasible set
3: for k := 0, . . . ,∞ do
4: for i := 1, . . . , n do
5: Solve y∗i := argmax

y∈Yi

Hi(y;w(k))

6: end for

7: Let vs :=

n∑
i=1

1
λnψi(y

∗
i ) and `s := 1

n

n∑
i=1

Li(y
∗
i )

8: Let γ := λ(v(k)−vs)Tw(k)−`(k)+`s
λ‖v(k)−vs‖2

and clip to [0, 1]

9: Update v(k+1) := (1− γ)v(k) + γ vs
10: and `(k+1) := (1− γ)`(k) + γ `s
11: and w(k+1) := [v(k+1)]ul
12: end for

Algorithm 9 Block-coordinate Frank-Wolfe algorithm for
structured SVM with box constraints

1: Let v(0) := vi
(0) := 0; `(0) := `i

(0) := 0;
2: w(0) := [v(0)]ul // truncation to the feasible set
3: for k := 0, . . . ,∞ do
4: Pick i at random in {1, . . . , n}
5: Solve y∗i := argmax

y∈Yi

Hi(y;w(k))

6: Let vs := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

7: Let γ :=
λ(v

(k)
i −vs)Tw(k)−`(k)

i +`s

λ‖v(k)
i −vs‖2

and clip to [0, 1]

8: Update vi(k+1) := (1− γ)vi
(k) + γ vs

9: and `i
(k+1) := (1− γ)`i(k) + γ `s

10: Update v(k+1) := v(k) + vi
(k+1) − vi(k)

11: and `(k+1) := `(k) + `i
(k+1) − `i(k)

12: Let w(k+1) := [v(k+1)]ul
13: end for

Denote the p-th variable of βu and βl with βu(p) and
βl(p), respectively. For any index p, both βu(p) and
βl(p) cannot be nonzero simultaneously, because if one
of the constraints is violated (either the upper or the lower
bound), then the other constraint must be satisfied. Hence,
βu(p) 6= 0 implies βl(p) = 0 and vice versa. Therefore,
the final update equations can equivalently be written as

β∗u(α) = [Aα− u]+ , (55)
β∗l (α) = [−Aα+ l]+ . (56)

Introducing v(α) := Aα, we get β∗u = [v − u]+ and
β∗l = [−v+ l]+. Hence, the operationw = v− (β∗u−β∗l )
is simply the projection (truncation) of v on the feasible
set defined by the upper and lower bounds. In the final
algorithm, we maintain v(α) and directly update the primal
variables w without updating βu and βl.
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H.3. Batch setting: optimizing w.r.t α with βu and βl
fixed

When the variables βu and βl are fixed, the convex prob-
lem (52) has a compact domain and so we can use the
Frank-Wolfe algorithm on it. In the following, we highlight
the differences with the setting without box constraints. We
denote by w(α) the truncation of v(α) on the box con-
straints, i.e.,

w(α) := v(α)− (β∗u(α)− β∗l (α)) . (57)

The derivations below assume that βu and βl are fixed to
their optimal values β∗u(α) and β∗l (α) for a specific α.

Linear subproblem. The Frank-Wolfe linear subprob-
lem can be written as

s = argmin
s′∈M

〈s′,∇αf(α,βl,βu)〉 (58)

where∇αf(α,βl,βu) can be easily computed:

∇αf(α,βl,βu) = λAT(Aα− (βu − βl))− b
= λATw − b. (59)

Analogously to the problem without box constraints, the
linear subproblem used by the Frank-Wolfe algorithm is
equivalent to the loss-augmented decoding subproblem (2).
The update of α can be made using the corner s. In what
follows, we show that this update can be performed without
explicitly keeping the dual variables at the cost of storing
the extra vector v.

The duality gap. The Frank-Wolfe gap for problem (52)
can be written as

g(α) := max
s′∈M

〈α− s′,∇αf(α,βl,βu)〉
= (α− s)T(λAT(Aα− (βu − βl))− b)
= λ(v − vs)Tw − bTα+ bTs

where vs := As. Below, we prove that the Frank-Wolfe
duality gap g(α) for the problem (52) when βu and βl
are fixed at their current optimal value for the current α
equals to a Lagrange duality gap, analogously to the case
without box constraints (Lacoste-Julien et al., 2013, Ap-
pendix B.2).12

Proof. Consider the difference between the primal objec-
tive of (48) at w := Aα − (βu − βl) with the optimal
slack variables ξ and the dual objective of (52) at α (in the

12We stress that this relationship is only valid for the pairw =
w(α) in the primal, and βu = β∗u(α),βl = β

∗
l (α) in the dual.

maximization form). We get

gLag.(w,α) = λ
2w

Tw + 1
n

n∑
i=1

H̃i(w)

−
(
bTα− λ

2w
Tw − λ(βT

uu− βT
l l)
)

= λwTw − bTα+ 1
n

n∑
i=1

max
y∈Yi

Hi(y;w)

+ λ(βT
uu− βT

l l) .

Recalling

1
n

n∑
i=1

max
y∈Yi

Hi(y;w) = max
s′∈M

−s′T∇αf(α,βl,βu)

= −sT∇αf(α,βl,βu),

we can write

gLag.(w,α) = λwT(Aα− (βu − βl))− bTα
− sT∇αf(α,βl,βu) + λ(βT

uu− βT
l l)

= (λwTA− bT)α− sT∇αf(α,βl,βu)

− λ(wTβu −wTβl) + λ(βT
uu− βT

l l)

= (α− s)T∇αf(α,βl,βu)

+ λ(βT
u (u−w)− βT

l (l−w)).

As we assumed that βu = β∗u(α) and βl = β∗l (α), we
have β∗Tu (u−w) = 0 and β∗Tl (l−w) = 0, and thus

gLag(w,α,β
∗
u,β

∗
l ) = g(α).

Line-Search. Line search can be performed efficiently
using γopts := 〈α−s,∇f(α)〉

λ‖A(α−s)‖2 = g(α)

λ‖v−vs‖2
.

Algorithm. Algorithm 8 contains the batch Frank-Wolfe
algorithm with box constraints. The main idea consists in
maintaining the vector v := Aα in order to perform all the
updates of α using only the primal variables. Optimization
w.r.t. βl and βu corresponds to the truncation of v. Given
these variables, the gap and the optimal step size are easy
to compute.

H.4. The block-coordinate setting
Algorithm 9 describes the block-coordinate version of the
Frank-Wolfe algorithm with box constraints. The algo-
rithm is obtained from the batch version (Algorithm 8) in
exactly the same way as BCFW (Algorithm 1) is obtained
from the batch Frank-Wolfe method (Lacoste-Julien et al.,
2013, Algorithm 2).
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Table 1. Statistics of the datasets used in the experimental evaluation. For the oracle time, we report the sum of the average running
times for both the max oracle and the joint feature map computation (the starred numbers indicate that the input features were stored on
disk instead of RAM, thus slowing down the computation).

Dataset Task Sructure (Oracle) Citation Version n d Sparsity Box
constraints

Oracle time
(in s)

OCR character recognition chain (Viterbi) (Taskar et al., 2003) small 626 4, 082 No No 5× 10−4

large 6, 251 4, 082 No No 5× 10−4

CoNLL text chunking chain (Viterbi) (Tjong Kim Sang &
Buchholz, 2000) 8, 936 1, 643, 026 Yes No 2× 10−2

HorseSeg binary segmentation grid (graph cut) (Kolesnikov et al.,
2014)

small 147 1, 969 No Yes 1× 10−3

medium 6, 121 1, 969 No Yes 1× 10−3

large 25, 438 1, 969 No Yes 2× 10−2 (*)

LSP pose estimation tree (max sum) (Johnson &
Everingham, 2010) small 100 2, 676 No Yes 2 (*)

I. Dataset description
In our experiments, we use four structured prediction
datasets: OCR (Taskar et al., 2003) for character recogni-
tion; CoNLL (Tjong Kim Sang & Buchholz, 2000) for text
chunking; HorseSeg (Kolesnikov et al., 2014) for binary
image segmentation; LSP (Johnson & Everingham, 2010)
for pose estimation. In this section, we provide the de-
scription of the datasets and the corresponding models. Ta-
ble 1 summarizes quantitative statistics for all the datasets.
For the OCR and CoNLL datasets, the features and models
described below are exactly the same as used by Lacoste-
Julien et al. (2013); we give a detailed description for ref-
erence. For HorseSeg and LSP, we had to build the mod-
els ourselves from previous work referenced in the relevant
section.

I.1. OCR
The Optical Character Recognition (OCR) dataset col-
lected by Taskar et al. (2003) poses the task of recogniz-
ing English words from sequences of handwritten symbols
represented by binary images. The average length of se-
quences equals 7.6 symbols. For a sequence of length T ,
the input feature representation x consists of T binary im-
ages of size 16 × 8. The output object y is a sequence of
length T with each symbol taking 26 possible values.

The OCR dataset contains 6, 877 words. In the small ver-
sion, 626 words are used for training and the rest for testing.
In the large version, 6, 251 words are used for training and
the rest for testing.

The prediction model is a chain. The feature map φ(x,y)
contains features of three types: emission, transition and
bias. The 16× 8× 26 emission features count the number
of times along the chain a specific position of the 16 ×
8 binary image equals 1 when associated with a specific
output symbol. The 26 × 26 transition features count the
number of times one symbol follows another. The 26 × 3
bias features represent three biases for each element of the
output alphabet: one model bias, and a bias for when the
letter appears at the beginning or at the end of the sequence.

As the structured error between output vectors L(yi,y),
the OCR dataset uses the Hamming distance normalized
by the length of the sequences. The loss-augmented struc-
tured score Hi(y;w) is a function with unary and pairwise
potentials defined on a chain and is exactly maximized with
the dynamic programming algorithm of Viterbi (1967).

I.2. CoNLL
The CoNLL dataset released by Tjong Kim Sang & Buch-
holz (2000) poses the task of text chunking. Text chunk-
ing, also known as shallow parsing (Sha & Pereira, 2003),
consists in dividing the input text into syntactically related
non-overlapping groups of words, called phrase or chunks.
The task of text chunking can be cast as a sequence la-
beling where a sequence of labels y is predicted from an
input sequence of tokens x. For a given token xt (a word
with its corresponding part-of-speech tag), the associated
label yt gives the type of phrase the token belongs to, i.e.,
says whether or not it corresponds to the beginning of a
chunk, or encodes the fact that the token does not belong to
a chunk.

The CoNLL dataset contains 8, 936 training English sen-
tences extracted from the Wall Street Journal part of the
Penn Treebank II (Marcus et al., 1993). Each output label
yt can take up to 22 different values.

We use the feature mapφ(x,y) proposed by Sha & Pereira
(2003). First, for each position t of the input sequence x,
we construct a unary feature representation, containing the
local information. We start with extracting several at-
tributes representing the words and the part-of-speech tags
at the positions neighboring to t.13 Each attribute is en-
coded with an indicator vector of length equal to either
the dictionary size or the number of part-of-speech tags.
We concatenate these vectors to get a unary feature repre-
sentation, which is a sparse binary vector of dimensional-

13We extract the attributes with the CRFsuite library (Okazaki,
2007) and refer to its documentation for the exact list
of attributes: http://www.chokkan.org/software/
crfsuite/tutorial.html.

http://www.chokkan.org/software/crfsuite/tutorial.html
http://www.chokkan.org/software/crfsuite/tutorial.html
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ity 74, 658. Note that these representation can be precom-
puted outside of the training process.

Given a labeling y and the unary representations, the fea-
ture map φ is constructed by concatenating features of
three types (as in the chain model for OCR): emission, tran-
sition and bias. The 74, 658 × 22 emission features count
the number of times each coordinate of the unary represen-
tation of token xt is nonzero and the corresponding output
variable yt is assigned a particular value. The transition
map of size 22 × 22 encodes the number of times one la-
bel follows another in the output y. The 22 × 3 bias fea-
tures encode biases for all the possible values of the output
variables and, specifically, biases for the first and the last
variables.

As in the OCR task, the structured error L(yi,y) is the nor-
malized Hamming distance and thus the max-oracle can be
efficiently implemented using the dynamic programming
algorithm of Viterbi (1967).

I.3. HorseSeg
The HorseSeg dataset14 released by Kolesnikov et al.
(2014) poses the task of object/background segmentation
of images containing horses, i.e., assigning a label “horse”
or “background” to each pixel of the image. HorseSeg con-
tains 25, 438 training images, 147 of which are manually
annotated, 5, 974 annotations are constructed from object
bounding boxes by the automatic method of Guillaumin
et al. (2014), while the remaining 19, 317 annotations were
constructed by the same method but without any human su-
pervision. The test set of HorseSeg consists of 241 images
with manual annotations. In our experiments, we use train-
ing sets of three different sizes: 147 images for HorseSeg-
small, 6, 121 images for HorseSeg-medium and 25, 438 for
HorseSeg-large.

In addition to images and their pixel-level annotations,
Kolesnikov et al. (2014) released15 oversegmentations (su-
perpixels) of the images precomputed with the SLIC algo-
rithm (Achanta et al., 2012) and the unary features of each
superpixel computed similarly to the work of Lempitsky
et al. (2011). On average, each image contains 147 super-
pixels. The 1, 969 unary features include 1 constant fea-
ture, 512-bin histograms of densely sampled visual SIFT
words (Lowe, 2004), 128-bin histograms of RGB colors,
16-bin histograms of locations (each pixel of a region of
interest is matched to a cell of the 4× 4 uniform grid). The
three aforementioned histograms are computed on the su-
perpixels themselves, on the superpixels together with their
neighboring superpixels, and on the second-order neigh-
borhoods.

For each pair of adjacent superpixels, we construct 100

14https://pub.ist.ac.at/˜akolesnikov/
HDSeg/HDSeg.tar

15https://pub.ist.ac.at/˜akolesnikov/
HDSeg/data.tar

pairwise features: a constant feature; and quantities
exp (−ηdpq) where dpq is a χ2-distance between 9 pairs
of the corresponding histograms of each type for neighbors
p and q, and η is a parameter taking 11 values from the set
2−5, 2−4, . . . , 25.

The structured feature map is defined in such a way that
the corresponding structured score function contains unary
and pairwise Potts potentials

〈w,φ(xi,y)〉 =
∑
p∈Vi

〈wU ,xUi,p〉([yp = 1]− [yp = 0])

+
∑

{p,q}∈Ei

〈wP ,xPi,pq〉[yp 6= yp]

where the vector xi = ((xUi,p)p∈Vi , (x
P
i,pq){p,q}∈Ei) de-

notes all the features of image i, the vector y = (yp)p∈Vi ∈
{0, 1}Vi is a feasible labeling, the set Vi is the set of the
superpixels of the image i, and the set Ei represents the ad-
jacency graph.

The structured error is measured with a Hamming loss with
class-normalized penalties

L(yi,y) =
∑
p∈Vi

ωyi,p [yi,p 6= yp]

where yi = (yi,p)p∈Vi is the labeling of superpixels closest
to the ground-truth annotation and the weights ω0 and ω1

are proportional to the ground-truth area of each class.

The loss-augmented score function

L(yi,y)− 〈w,φ(xi,y)〉

is a discrete function defined w.r.t. a cyclic graph and can
be maximized in polynomial time when it is supermodu-
lar. By construction, all our pairwise features are nonnega-
tive, so we can ensure supermodularity by adding positivity
constraints on the weights corresponding to the pairwise
features wP < 0. The version of BCFW with positivity
constraints is described in Appendix H.

The discrete optimization problem arising in the max-
oracle is solved by the min-cut/max-flow algorithm
of Boykov & Kolmogorov (2004). The running time or
the max-flow is small compared to the operations with the
features required to compute the potentials.

I.4. LSP
The Leeds Sports Pose (LSP) dataset introduced by (John-
son & Everingham, 2010) poses the tasks of full body pose
estimation from still images containing sports activities.
Based on the input image with a centered prominent per-
son, the task is to predict the locations of 14 body-parts
(joints), e.g., “left knee” or “right ankle”.

We cast the task of pose estimation as a structured pre-
diction problem and build our model based on the work

https://pub.ist.ac.at/~akolesnikov/HDSeg/HDSeg.tar
https://pub.ist.ac.at/~akolesnikov/HDSeg/HDSeg.tar
https://pub.ist.ac.at/~akolesnikov/HDSeg/data.tar
https://pub.ist.ac.at/~akolesnikov/HDSeg/data.tar
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of Chen & Yuille (2014), which is one of the state-of-the-
art methods for pose estimation. First, we construct an
acyclic graph where the nodes p ∈ V correspond to the dif-
ferent body-parts. The set of body parts is extended from
the original 14 parts of interest by the midway points to get
the 26 nodes of the graph. Second, the graph is converted
into the directed one by utilizing the arcs of both orienta-
tions for each original edge. We denote the resulting graph
by G = (V, ~E).

In the model of Chen & Yuille (2014), each node p ∈ V
has a variable lp ∈ P ⊂ R2 denoting the spatial po-
sition of the corresponding joint that belongs to a finite
set of possibilities P; each arc (p, q) ∈ ~E has a variable
tpq ∈ T = {1, . . . , 13} representing the type of spacial re-
lationship between the two nodes. The output variable y is
constructed by concatenating the unary and pairwise vari-
ables y =

(
(lp)p∈V , (tpq)(p,q)∈~E

)
.

The structure score function is a function of discrete vari-
ables lp and tpq that is defined w.r.t. the graph G:

〈w,φ(xi,y)〉 =
∑
p∈V

wU,pφ
U
p (Ii, lp)

+
∑

(p,q)∈E

wT,pqφ
P
pq(Ii, lp, tpq)

+
∑

(p,q)∈E

〈wP,pq,tpq ,∆(lp − lq − rtpqpq )〉.

Here, the input xi =
(
Ii, (r

t
pq)

t∈T
(p,q)∈~E

)
consists of

the original image Ii and the mean relative positions
rtpq ∈ R2 of each type of spatial relationship correspond-
ing to each arc (p, q) ∈ ~E . Functions φUp (Ii, ·) and
φPpq(Ii, ·, ·) compute the scores for each possible value of
the discrete variables lp and (lp, tpq), respectively. The
vector-valued function ∆(l) = (l1, l

2
1, l2, l

2
2), l ∈ R2,

measures different types of mismatch between the pre-
ferred relative displacement rtpqpq and the displacement
lp − lq coming from the labeling y. The vector w =(
(wU,p)p∈V , (wT,pq)(p,q)∈~E , (wP,pq,t)

t∈T
(p,q)∈~E

)
is the joint

vector of parameters learned by structured SVM. Overall,
this setup has 2, 676 parameters.

Displacements rtpq and functions φUp , φP are computed at
the preprocessing stage of the structured SVM. We fol-
low Chen & Yuille (2014) and obtain the displacements
rtpq with the K-means clustering of the displacements of
the training set. Functions φUp , φP consists in a Convo-
lutional Neural Network (CNN) and are also learned from
the training set. We refer the reader to the work of Chen
& Yuille (2014) and their project page16 for further details.
Note that the last training stage of Chen & Yuille (2014) is

16http://www.stat.ucla.edu/˜xianjie.chen/
projects/pose_estimation/pose_estimation.
html

different from ours, i.e., it consists in binary SVM on the
carefully sampled sets of positive and negative examples.

To run SSVM, we define the structured error L(yi,y) as a
decomposable function w.r.t. the positions of the joints

L(yi,y) = 1
|V|

∑
p∈V

max
(

1,
‖li,p−lp‖22

s2i

)
where li,p belongs to the ground-truth labeling yi and lp
belongs to the labeling y. The quantity si ∈ R is the scal-
ing factor and is defined by the distance between the left
shoulder and the right hip in the ground-truth labeling yi.
Similarly to Osokin & Kohli (2014), the complex depen-
dence of the loss on the ground-truth labeling does not in-
fluence the complexity of the max oracle.

For the defined structured score and loss, the optimization
problem of the max oracle can be exactly solved by the
max-sum belief propagation algorithm on an acyclic graph
with messages computed with the generalized distance
transform (GDT) (Felzenszwalb & Huttenlocher, 2005).
The usage of GDTs allows to significantly reduce the or-
acle running time, but requires positivity constraints on the
connection weights wP,pq,t. BCFW with positivity con-
straints is described in Appendix H.

The resulting max oracle is quite slow (2 seconds per im-
age) even when the belief propagation algorithm is opti-
mized with GDTs. Slow running time made it intractable
for us to run the experiments on the full original training
set consisting of 1, 000 images. We use only the first 100
images and refer to this dataset as LSP-small. However,
both the CNN training and clustering of the displacements
were done on the original training set.

http://www.stat.ucla.edu/~xianjie.chen/projects/pose_estimation/pose_estimation.html
http://www.stat.ucla.edu/~xianjie.chen/projects/pose_estimation/pose_estimation.html
http://www.stat.ucla.edu/~xianjie.chen/projects/pose_estimation/pose_estimation.html
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J. Full experimental evaluation: comparing
BCFW variants

In Figures 5 and 6, we give the detailed results of the ex-
periments described in section 5.1. As a reminder, we are
comparing different methods (caching vs no caching, gap
sampling vs uniform sampling, pairwise FW steps vs regu-
lar FW steps) on different datasets in three main regimes
w.r.t. λ. For each dataset, we use the good value of λ
(“good” meaning the smallest possible test error) together
with its smaller and larger values. The three regimes are
displayed in the middle (b), top (a) and bottom (c) of each
subfigure, respectively.

K. Full experimental evaluation:
regularization path

In this section, we evaluate the regularization path method
proposed in Section 4. Our experiments are organized in
three stages. First, we choose the κ parameter for Algo-
rithm 7 computing the ε-approximate regularization path.
Second, we define and evaluate the heuristic regularization
path. Finally, we compare both ε-approximate and heuris-
tic paths against the grid search on multiple datasets.

ε-approximate path. Algorithm 7 for computing the ε-
approximate regularization path has one parameter κ con-
trolling how large are the induction steps in terms of λ.
This parameter provides the trade-off between the number
of breakpoints and the accuracy of optimization for each
breakpoint. We explore this trade-off in Figure 7a. For
several values of κ, we report the cumulative number of
effective passes (bottom plots) and cumulative time (top
plots) required to get ε-approximate solution for each λ.
We report both plots for the two methods used as the SSVM
solver: BCPFW with gap sampling and caching; BCFW
with gap sampling and without caching. We conclude that
both too small (< 0.5) and too large (≈ 1) values of pa-
rameter κ result in slower methods, but overall the method
is not too sensitive to κ. In all remaining experiments, we
use κ = 0.9 when computing the ε-approximate path.

Heuristic path. When computing an ε-approximate reg-
ularization path, Algorithm 7 needs to perform at least one
pass over the dataset at each breakpoint to check the con-
vergence criterion, i.e., that the gap is not larger than ε.
When having many breakpoints, this extra pass can be of
significant cost, especially for large values of λ where the
SSVM solver converges very quickly. However, in prac-
tice, we observe that the stale gap estimates are often good
enough to determine convergence and actually checking the
convergence criterion is not necessary. At the cost of loos-
ing the guarantees, we can expect computational speed-
up. We refer to the result of Algorithm 7 when the SSVM
solver (at line 22) uses stale gap estimates instead of the
exact gaps to check the convergence as a heuristic path. In

the case of heuristic path, the parameter κ provides a trade-
off between the running time and accuracy of the path. In
Figure 7b, we illustrate this trade-off on the OCR-small
dataset. For several values of κ, we report the true value
of the duality gap at each breakpoint (the SSVM solver ter-
minates when the stale gap estimate is below κε, ε = 0.1)
and the cumulative time. We use BCFW + gap sampling
and BCPFW + gap sampling + cache as the SSVM solvers.
For large κ, we observe that the solutions for small λ are
not ε-approximate and that the method in this regime re-
quires less number of passes over the data, i.e., runs faster.
In what follows we always use κ = 0.7 for the heuristic
path as it is the largest value providing accurate enough re-
sults.

Comparison of paths against grid search. Finally, we
compare the regularization path methods to the standard
grid search approach. We define a grid of 31 values cho-
sen to cover all the values of λ used in the experiments of
Section J (215, 214, . . . , 2−15). For each value of the grid,
we optimize the SSVM objective optimize either indepen-
dently or by warm-starting from the nearest larger value.
We have considered two variants of warm start: keeping the
primal variables and rescaling the dual variables, or keep-
ing the dual variables and rescaling the primal variables. In
our experiments, we do not notice any consistent difference
between the two approaches, so we only use the first type
of warm start.

Figure 8 presents the results on the four datasets:
HorseSeg-small (Figure 8a), OCR-small (Figure 8b),
HorseSeg-medium (Figure 8c), OCR-large (Figure 8d).

For both the OCR-large and HorseSeg-medium datasets,
neither heuristic, nor ε-approximate path methods did not
reach their stopping criterion and were terminated at the
time limit of 24 hours. In the case of OCR-large, the
regularization path reached a value of λ smaller than the
lower limit of the predefined grid, i.e., 2−15. In the case of
HorseSeg-medium, the grid search methods did not reach
the lower bound of the grid and were terminated at the 24-
hour time limit.
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(a) OCR-large, λ = 0.0001 (a) CoNLL, λ = 0.0001
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(b) OCR-large, λ = 0.001 (b) CoNLL, λ = 0.01
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(c) OCR-large, λ = 0.1 (c) CoNLL, λ = 0.1
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(a) HorseSeg-small, λ = 0.1 (a) HorseSeg-medium, λ = 0.1
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Figure 5. Comparison of the variants of BCFW. We compare 8 different methods that can be represented by 3 binary dimensions: object
sampling, caching, type of FW steps. We represent these dimensions in different ways: the dimension of caching (in blue) versus no
caching (in orange) is represented through colors, the dimension of gap sampling (solid lines) versus uniform sampling (dashed lines)
is represented through line style, the dimension of pairwise FW steps (circle markers) versus regular FW steps (square markers) is
represented through markers. For each method, we report both the number of effective passes over data (n oracle calls) and the running
time against obtained duality gap (computed offline). The figure is continued in Figure 6.
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Figure 6. Continuation of Figure 5. Comparison of the variants of BCFW on HorseSeg-large and LSP-small.
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Figure 7. Experiment exploring the effect of κ for regularization paths computed on the OCR-small dataset.
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(a) HorseSeg-small
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(b) OCR-small
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(c) HorseSeg-medium
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Figure 8. Comparison of regularization path methods. In each subfigure, we compare the ε-approximate regularization path against the
heuristic path and the grid search with/without warm start for a specific dataset. In each subfigure, we report the cumulative running
time (top) and the cumulative effective number of passes (bottom) required to get to each value of the regularization parameter λ. We
report results using two different methods as the SSVM solver: BCFW + gap sampling (left) and BCPFW + gap sampling + caching
(right). Note that for OCR-large, the time limit of 24 hours was reached for the regularization path methods. However, the reached value
of λ is smaller than the lower boundary of the grid 2−15. For HorseSeg-medium, the time limit of 24 hours was reached for both the
regularization path and grid search methods.
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